数学笔记1

参考资料:

1、均值、标准差、方差

  • 均值、期望:估算样品集合的平均水平
    X ‾ = ∑ i = 1 n X i n \overline{\text{X}}=\dfrac{\sum_{i=1}^nX_i}{n} X=ni=1nXi
  • 标准差:
    s = ∑ i = 1 n ( X i − X ‾ ) 2 n − 1 s=\sqrt{\dfrac{\sum_{i=1}^n(X_i-\overline{X})^2}{n-1}} s=n1i=1n(XiX)2
  • 方差:估算样品集合的散步度,单元维度偏离其均值的程度
    s 2 = ∑ i = 1 n ( X i − X ‾ ) 2 n − 1 s^2=\dfrac{\sum_{i=1}^n(X_i-\overline{X})^2}{n-1} s2=n1i=1n(XiX)2

2、协方差

  • 协方差(covariance):模拟方差的定义,度量各个维度偏离其均值的程度
    c o v ( X , Y ) = ∑ i = 1 n ( X i − X ‾ ) ( Y i − Y ‾ ) n − 1 cov(X,Y)=\dfrac{\sum_{i=1}^n(X_i-\overline{X})(Y_i-\overline{Y})}{n-1} cov(X,Y)=n1i=1n(XiX)(YiY)
    通俗理解:方差是计算一个班级每个人身高的离散程度之和。协方差是计算一个班级每个人(i=0,1,2…)的身高和体重(两个变量)的相互影响,然后求和。
    其他公式:(E表示数学期望)
    C o v ( X i , X j ) = E [ ( X i − E [ X i ] ) ( X j − E [ X j ] ) ] Cov(X_i,X_j)=E[(X_i-E[X_i])(X_j-E[X_j])] Cov(Xi,Xj)=E[(XiE[Xi])(XjE[Xj])]

2.1、协方差矩阵

描述多个随机变量之间的协方差的方阵。协方差是两个随机变量的线性相关程度的度量。

如果有n个随机变量 X 1 , X 2 , … , X n X_1,X_2,…,X_n X1,X2,,Xn,那么它们的协方差矩阵 ∑ \sum 可以表示为:
∑ = [ C o v ( X 1 , X 1 ) C o v ( X 1 , X 2 ) ⋯ C o v ( X 1 , X n ) C o v ( X 2 , X 1 ) C o v ( X 2 , X 2 ) ⋯ C o v ( X 1 , X n ) ⋮ ⋮ ⋱ ⋮ C o v ( X n , X 1 ) C o v ( X n , X 2 ) ⋯ C o v ( X n , X n ) ] (c) \sum= \begin{bmatrix} Cov(X_1,X_1)&Cov(X_1,X_2) & \cdots & Cov(X_1,X_n)\\ Cov(X_2,X_1)&Cov(X_2,X_2) & \cdots & Cov(X_1,X_n)\\ \vdots & \vdots & \ddots & \vdots\\ Cov(X_n,X_1)&Cov(X_n,X_2) & \cdots & Cov(X_n,X_n) \end{bmatrix} \tag{c} = Cov(X1,X1)Cov(X2,X1)Cov(Xn,X1)Cov(X1,X2)Cov(X2,X2)Cov(Xn,X2)Cov(X1,Xn)Cov(X1,Xn)Cov(Xn,Xn) (c)

2.1.1、协方差矩阵奇异值分解(SVD)

  • 将X的转置( X T X^T XT)与X相乘,等效于计算X和X在每个维度上对应坐标的内积。
  • 内积反映两个向量在某个维度上的相似程度,越相似内积越大
  • 因此 X T X X^TX XTX的每个元素就是X和X在该维度上坐标的协方差(还没很理解enmm)

协方差矩阵是一个描述两个或多个随机变量之间的线性关系的矩阵,它的元素是各对随机变量之间的协方差。协方差矩阵可以进行奇异分解(SVD),参考下面SVD解析,假设X是一个np的数据矩阵,每一行是一个p维的观测值,每一列斯一个n维的变量,那么X的协方差矩阵S可以写为: S = 1 n − 1 X T X S=\dfrac{1}{n-1}X^TX S=n11XTX
S的奇异值分解可以写为:
S = U ∑ V T S=U\sum V^T S=UVT
其中,U、V都是p*p的正交矩阵( U T U = V V T = I U^TU=VV^T=I UTU=VVT=I I I I是单位矩阵), ∑ \sum 是p
p的对角矩阵( ∑ = d i a g ( σ 1 , σ 2 , … , σ p \sum=diag(\sigma_1,\sigma_2,…,\sigma_p =diag(σ1,σ2,,σp σ i \sigma_i σi是S的第i个奇异值,按降序排列)。

奇异值分解的几何意义是将原始数据在一个新的坐标系下展开,即各个主成分之间没有线性相关性。

  • ∑ \sum 表示各个主成分对数据方差的贡献,越大的奇异值对应越重要的主成分;
  • V表示原始数据在新坐标下的投影;

∑ \sum 是主成分对数据方差的贡献,也就是各主成分的长度。它们不是权重,因为它们不一定加起来等于1。

2.1.2、多维度高斯分布

(这部分有些云里雾里,先记下后面再看)
多维高斯分布有2个参数:
μ \mu μ:可以用所有样品的均值来估计,代表总体数据的平均值
∑ \sum :就是上述协方差矩阵,代表不同维度的相关联程度
在这里插入图片描述

3、奇异值分解(SVD)

参考:https://zhuanlan.zhihu.com/p/448767610?utm_id=0
奇异值分解(SVD,Singular Value Decomposition),主要思想就是主成分分解,求解奇异值。奇异值分解可以看作是对矩阵S进行一个旋转、缩放和再旋转的操作,使得S变成一个对角矩阵。这样可以提取出S的主要特征,例如方向、变化程度和线性相关性。

粗俗理解就是一个矩阵(A)转化为3个矩阵( U 、 ∑ 、 V T U、\sum、V^T UVT)乘积:
A = U ∑ V T A=U\sum V^T A=UVT
其中:
A:M*N的矩阵;
U U U:M*M的正交矩阵(即 U T U = I U^TU=I UTU=I), U = A A T U=AA^T U=AAT
∑ \sum :M*N的对角矩阵(除主对角线全部是0),主对角线每个元素为奇异值
V:N*N的正交矩阵, V T = A T A V^T=A^TA VT=ATA

在这里插入图片描述

4、傅里叶变换

傅里叶(Fourier)变换,简称DFT变换(更准确应该叫离散傅里叶变换),是把满足某些条件的函数表示为三角函数(正弦函数/余弦函数)或它们积分的线性组合,傅里叶变换是对傅里叶级数控制到有限的有限序列长后的离散化。

  • 满足一定条件的函数通过一定的分解,可延拓为周期为l的函数,进一步展开为傅里叶级数,即:

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n π x l + b n s i n n π x l ) f(x)=\dfrac{a_0}{2}+\sum^\infin_{n=1}(a_ncos\dfrac{n\pi x}{l}+b_nsin\dfrac{n\pi x}{l}) f(x)=2a0+n=1(ancoslx+bnsinlx)
其中,系数 a n a_n an b n b_n bn:

a n = 1 l ∫ − l l f ( x ) c o s n π x l d x , ( n = 0 , 1 , 2 , … ) a_n=\dfrac 1 l \int_{-l}^l f(x)cos\dfrac{n\pi x}{l}dx,(n=0,1,2,…) an=l1llf(x)coslxdx,(n=0,1,2,)
b n = 1 l ∫ − l l f ( x ) s i n n π x l d x , ( n = 1 , 2 , … ) b_n=\dfrac 1 l \int_{-l}^l f(x)sin\dfrac{n\pi x}{l}dx,(n=1,2,…) bn=l1llf(x)sinlxdx,(n=1,2,)

4.1、一维DFT变换

一元连续函数f(x)的傅里叶变换F(u):
F ( u ) = ∫ − ∞ ∞ f ( x ) e − j 2 π u x d x F(u)=\int_{-\infin}^\infin f(x)e^{-j2\pi ux}dx F(u)=f(x)ej2πuxdx
F(u)的傅里叶反变换为:
f ( x ) = ∫ − ∞ ∞ F ( u ) e − j 2 π u x d u f(x)=\int_{-\infin}^\infin F(u)e^{-j2\pi ux}du f(x)=F(u)ej2πuxdu

4.1.1、一维离散傅里叶变换

对上述 f ( x ) f(x) f(x)进行等间隔采样,设采样了N个样本,这离散序列可表示为 { f ( 0 ) , f ( 1 ) , … , f ( N − 1 ) } \{f(0),f(1),…,f(N-1)\} {f(0),f(1),,f(N1)},记x为离散实变量,u为离散频率变量。

  • 一维离散傅里叶变换:
    F ( u ) = ∑ x = 0 N − 1 f ( x ) e − j 2 π u x / N , u = 0 , 1 , 2 , … , N − 1 F(u)=\sum_{x=0}^{N-1}f(x)e^{-j2\pi ux/N},u=0,1,2,…,N-1 F(u)=x=0N1f(x)ej2πux/N,u=0,1,2,,N1
  • F(u)对反变换:
    f ( x ) = 1 N ∑ x = 0 N − 1 F ( u ) e j 2 π u x / N , x = 0 , 1 , 2 , … , N − 1 f(x)=\dfrac{1}{N}\sum_{x=0}^{N-1}F(u)e^{j2\pi ux/N},x=0,1,2,…,N-1 f(x)=N1x=0N1F(u)ej2πux/N,x=0,1,2,,N1
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值