本节的几个大的知识点能够用一句话来概括:以一组 相互独立 的向量为 基 而张成的空间的 维度 是这些向量的个数。 好了,本节完……

文章目录
本节引导
- 矩阵A中的列独立等价于" A x = 0 Ax=0 Ax=0 的唯一解为 x = x = x= 0 ", 矩阵A的零空间为 Z 也就是 {0}
- 向量之间独立,换句话说就是对于相互独立的几个向量, v 1 , v 2 , … … , v k v_1, v_2,……,v_k v1,v2,……,vk,如果一组系数 c 1 , c 2 , … … , c k c_1,c2,……,c_k c1,c2,……,ck,使得 c 1 v 1 + c 2 v 2 + … … + c k v k = 0 c_1v_1+c_2v_2+……+c_kv_k = 0 c1v1+c2v2+……+ckvk=0,那么这几个系数一定都等于0。
- 列数n大于行数m的矩阵 A A A,一定是存在至少 n -m 个自由元, A x = 0 Ax=0 Ax=0 一定有非零解,一定存在一组系数 c 1 , c 2 , … … , c k c_1,c2,……,c_k c1,c2,……,ck,使得 c 1 v 1 + c 2 v 2 + … … + c k v k = 0 c_1v_1+c_2v_2+……+c_kv_k = 0 c1v1+c2v2+……+ckvk=0,而且这些系数一定有非零项。
- 如果空间 S S S 是一由组向量 v 1 , v 2 , … … , v k v_1,v_2,……,v_k v1,v2,……,vk的所有线性组合构成的,那么我们可以说这些向量 v ′ s v's v′s 张成了空间 S S S。
- 同4,如果这组向量相互独立,我则可以说这组向量是空间 S S S 的基。
- 同5,这些互相独立张成空间 S S S 的向量的个数,叫做空间的维度。
- 如果矩阵 A A A 是 n × n n \times n n×n 可逆矩阵(也就是我一点点化简,最后能把这个矩阵化成单位矩阵),那么这个矩阵的所有列是一个 n 维空间 R n R^n Rn 的基。
3.4.1 线性无关
1. 定义
- 单纯从矩阵上来理解,线性无关就是矩阵方程 A x = 0 Ax=0 Ax=0 的解是个零向量。
- 再简单一点就是,上面引导中的那句话:
相互独立的几个向量, v 1 , v 2 , … … , v k v_1, v_2,……,v_k v1,v2,……,vk,如果一组系数 c 1 , c 2 , … … , c k c_1,c2,……,c_k c1,c2,……,ck,使得 c 1 v 1 + c 2 v 2 + … … + c k v k = 0 c_1v_1+c_2v_2+……+c_kv_k = 0 c1v1+c2v2+……+ckvk=0,那么这几个系数一定都等于0。
2. 理解
如果是第一句定义, A x = 0 Ax=0 Ax=0 本质上就是找到矩阵 A A A 中的所有列向量的某些组合方式,使得这些列向量的组合结果为0。
图示
我们来看看相互独立的向量的模样:
(2,1,0)、(1,2,0)、(2,2,3)
matlab牛逼,我用pyhton没画出来😂
这几个向量你就随便组合,使劲组合,能组成 0 算我输。
红色向量和黄色向量能组合成整个XY平面,但是XY平面里的所有向量都不能和紫色向量组合成零向量。
所以我们说这几个向量线性无关。
那么这些向量组成的矩阵
A
1
A_1
A1:
[
2
1
2
1
2
2
0
0
3
]
是
线
性
无
关
的
。
\left[ \begin{matrix} 2&1&2\\ 1&2&2\\ 0&0&3\\ \end{matrix} \right]是线性无关的。
⎣⎡210120223⎦⎤是线性无关的。
那么线性相关的向量是啥样?
这几个向量(2,1,0)、(1,2,0)、(2,2,0)都在一个平面里,随便两个向量就能组合成另外一个向量的相反量。他们三个一定有一种组合方式能够组成0向量。我们用这些向量当作列向量构成
A
2
A_2
A2
[
2
1
2
1
2
2
0
0
0
]
是
线
性
相
关
的
。
\left[ \begin{matrix} 2&1&2\\ 1&2&2\\ 0&0&0\\ \end{matrix} \right]是线性相关的。
⎣⎡210120220⎦⎤是线性相关的。
处理矩阵
我们化简这两个矩阵,
A
1
A_1
A1通过化简得到
R
1
R_1
R1,我们发现这成了单位矩阵了。
[
1
0
0
0
1
0
0
0
1
]
\left[ \begin{matrix} 1&0&0\\ 0&1&0\\ 0&0&1\\ \end{matrix} \right]
⎣⎡100010001⎦⎤
那么在变换的同时我们也能获得
A
1
A_1
A1逆矩阵
[
0
−
1
/
3
−
2
/
9
−
1
/
3
2
/
3
−
2
/
9
0
0
1
/
3
]
\left[ \begin{matrix} 0&-1/3&-2/9\\ -1/3&2/3&-2/9\\ 0&0&1/3\\ \end{matrix} \right]
⎣⎡0−1/30−1/32/30−2/9−2/91/3⎦⎤
与此同时,化简
A
2
A_2
A2 获得
R
2
R_2
R2
[
1
0
2
/
3
0
1
2
/
3
0
0
0
]
\left[ \begin{matrix} 1&0&2/3\\ 0&1&2/3\\ 0&0&0\\ \end{matrix} \right]
⎣⎡1000102/32/30⎦⎤
这个
A
2
A_2
A2是没有办法通过行变换获得单位矩阵了,也就是说明他不可逆。
结论
上面有点跑题,但是不要紧,我们看看 R 1 R_1 R1 和 R 2 R_2 R2,他们的秩分别是多少?一个是3,一个是2,秩也就是主元数, 由上图我们可以看到, A 1 A_1 A1表示的空间是一个三维空间, R 1 R_1 R1 的秩为3,说明 A 1 A_1 A1的三个列向量是相互独立的,都是主元所在的列,任何两个向量都没法表示第三个,他们三个永远都不能组成零(除了系数都为0的那种情况),那么 A 1 A_1 A1的三个列向量共同构成了 A 1 A_1 A1这个空间的基底,这三个列向量张成了一个三维空间。
而 R 2 R_2 R2 的主元为2,则说明有一个向量是多余的,只需要其中任意两个向量即可以表示他们三个所在的平面,所以多了一个自由元。那么你可以认为,主元列这几个向量就是矩阵空间的基底,这几个向量张成了这个矩阵空间。
3. 几个重点
- 列满秩矩阵,一个矩阵为列满秩矩阵,则说明了该矩阵的主元数等于列数,那么就像我们上面的 A 1 A_1 A1 一样,这些列向量都是线性无关的。
- 如果我们有一个 m × n m \times n m×n的矩阵,如果n > m,列向量空间的维度最多为m,所有列的组合成的空间都是 R m R^m Rm的子空间,那么在m维向量空间里的任意n个不同的向量一定是线性相关的。
3.4.2 张成空间的向量们
1. 定义
如果一组向量能够通过线性组合填充空间 S S S,我们可以说,这组向量张成了空间 S S S。需要注意一下的是,这些向量不一定是线性无关的。
2. 行向量空间
类似于我们之前一直讨论的列向量空间,所有的行也是能在一起进行线性组合的并形成向量空间的。对于矩阵 A A A,列向量空间是 R m R^m Rm的子空间,行向量空间其实就是矩阵转置后 A T A^T AT的列向量空间,参考上一节最后强调的,行向量空间就成为了 R n R^n Rn 的子空间。
3.4.3 向量空间的基
1. 定义
一个向量空间的基是一组向量,这一组向量必须满足如下两个特点:
- 相互独立
- 能够张成该向量空间
在矩阵空间内的任何一个向量都能由这组基,用唯一的线性组合方式构成。
2. 几个重点
-
标准基
n维向量空间的标准基就是一个n维的单位矩阵里的列向量组 -
每一个 n × n n \times n n×n可逆矩阵的列向量组都能构成一个 R n R^n Rn向量空间的基。
-
不可逆的奇异矩阵的主元列是其列向量空间的基,同样,主元所在的行也是其行空间的基。
我们来通过实例理解上面的两句话:
矩阵A是一个典型的可逆的
n
×
n
n \times n
n×n矩阵,他的所有列相互独立,都是主元,所有列能构成
R
3
R^3
R3矩阵空间的基。
而对于矩阵B,这是一个奇异矩阵,化简后得到
[
1
0
1
0
1
1
0
0
0
]
\left[ \begin{matrix} 1&0&1\\ 0&1&1\\ 0&0&0 \end{matrix} \right]
⎣⎡100010110⎦⎤
所以这个矩阵的秩为2,也就是说:
A(注意是A,R跟A的列空间不同)的列空间的一组基为
[
1
1
1
]
T
和
[
0
1
1
]
T
\bigl[\begin{matrix}1&1&1\end{matrix}\bigr]^T和\bigl[\begin{matrix}0&1&1\end{matrix}\bigr]^T
[111]T和[011]T
3.4.4 空间的维度
1. 维度的确定性
对于一个向量空间,我们有很多种选择它的基的方式,但是所有的基的向量数量都是一定的,也就是说,一个空间的维度是确定的。这里是有证明的,为了避免我写的太混乱,先拿老爷子的证明过程镇一镇,大家可以看看老爷子的解释。
-
首先,提出需要证明的结论:
一个向量空间中所有的基中的向量个数都相等 -
反证:假设两个基, w ′ s 、 v ′ s w's、v's w′s、v′s 分别代表 w 1 … … w n 、 v 1 … … v m w_1……w_n、v_1……v_m w1……wn、v1……vm,n > m(只要不相等,一定是一个的数量大于另一个)
-
由于 w ′ s 、 v ′ s w's、v's w′s、v′s 都是同一个矩阵空间的基,那么 w w w 中的任何一个向量都在该矩阵空间中,并且 w ′ s w's w′s 的任何一个向量都能被 v ′ s v's v′s 中的向量线性组合来表示。
-
那么根据上面的一点,我们构造方程
W = V A W = VA W=VA
W 就是 w ′ s w's w′s,V 就是 v ′ s v's v′s,A是啥?我们不是说了吗,W中的每个向量都能被V中的向量们线性组合来表示。由于矩阵相乘的性质,A一定是m行;而且最后的结果是W,是n行向量,那么A一定是n列。拿A的第一列来说,从 a 11 到 a m 1 a_{11}到a_{m1} a11到am1,分别与 v 1 到 v m v_1 到 v_m v1到vm相乘,最后m个向量相加,则获得了 w 1 w_1 w1。
所以A是啥?A可以认为是向量组 v ′ s v's v′s变换到 w ′ s w's w′s的一种方式。这种方式用矩阵来表示,并且该矩阵是 m × n m \times n m×n的。 -
开始强行操作:
∵ A是 m × n m \times n m×n的一个小胖子(行数m小于列数n)①
∴ A x = 0 Ax=0 Ax=0一定存在非零解(小胖子一定有自由元)②
∴ A x = 0 Ax=0 Ax=0成立 ③
∴ V 0 = V A x = 0 V0 = V Ax = 0 V0=VAx=0 成立 ④
∵ W = V A W = VA W=VA ⑤
∴ W x = 0 Wx = 0 Wx=0 成立 ⑥
∵ ②
∴ W x = 0 Wx = 0 Wx=0 存在非零解 ⑦
∵ W W W 是向量空间的基 ⑧
∴ W x = 0 Wx = 0 Wx=0 不存在非零解 ⑨
故导出矛盾,m不可能≠n
3.4.5 矩阵空间的基
其实矩阵空间没啥,主要是把我们上面讲的向量的知识都换成矩阵。
就比如一个空间包含所有的
2
×
2
2 \times 2
2×2矩阵,那它的维度就是4,这四个分别在四个角是1,其余是零,那么就说明任何一个
2
×
2
2 \times 2
2×2都能由这4个基来线性组合获得。
主要记住这几个
- 如果一个空间包含所有的 n × n n \times n n×n矩阵,那么他的维度是 n 2 n^2 n2
- 如果是只包含上三角,则维度为 1 + 2 + … … + n ) = n 2 / 2 + n / 2 1 + 2 + …… + n)=n^2/2 + n/2 1+2+……+n)=n2/2+n/2
- 只包含对角矩阵,你想想对角总共就n个元素,所以空间的维度为n
- symmetric 对称的,对称矩阵空间的维度与上三角是相同的,为啥?
推荐一个知乎大佬的分析:
MIT线性代数11:矩阵空间,秩 1 矩阵
他的解析是这样的:
如上图的(3),所以对称矩阵空间的维度也是是 1 + … … + n = n 2 / 2 + n / 2 1+……+n =n^2/2 + n/2 1+……+n=n2/2+n/2。
结尾
其实最后还有个函数空间,但是我实在是没法参透其中的奥秘,继续学,我一定会回来的。
