离散数学知识点总结(3):等值演算,16个命题定律 / 基础等价式,重言式的替换规则,证明有效性和可满足性的方法

等值演算

  • 当两个公式具有相同的真值表的时候,我们可以进行等价替换而不对结果的真值产生影响。

Example

p p p q q q p → q p \rightarrow q pq ¬ p ∨ q ¬p \vee q ¬pq
0011
0111
1000
1111

从表格中可以看到 p → q p \rightarrow q pq ¬ p ∨ q ¬p \vee q ¬pq 具有相同的真值表,因此,在任何情况下,这两个合式公式都可以看做是等价的 ≡ \equiv 或者 ⇔ \Leftrightarrow ,即 ( p → q ) ≡ ( ¬ p ∨ q ) (p \rightarrow q) \equiv (¬p \vee q) (pq)(¬pq)

Note:

  • 命题逻辑的知识点中我们使用两大类符号,一类叫做逻辑联结词 ¬ , ∨ , ∧ , → , ↔ ¬, \vee, \wedge, \rightarrow, \leftrightarrow ¬,,,, 他们作用在合式公式的内部。
  • 另外一类叫做元语言的符号: ⇒ 或 ⊨ \Rightarrow 或 \models (蕴含), ⇔ 或 ≡ \Leftrightarrow 或 \equiv 等价,这些符号作用在两个 合式公式之间,比如我们上面提到的 “等价” 就代表两个合式公式具有相同的真值。
  • 那么上述的两类符号到底有什么联系呢?

¬ , ∨ , ∧ , → , ↔ ¬, \vee, \wedge, \rightarrow, \leftrightarrow ¬,,,, ⇒ 或 ⊨ \Rightarrow 或 \models ⇔ 或 ≡ \Leftrightarrow 或 \equiv 之间的关系

  • 假设现在有两个合式公式: A : p → q A: p \rightarrow q A:pq B : ¬ p ∨ q B: ¬p \vee q B:¬pq 当我们说 A ≡ B A \equiv B AB 的时候,我们需要证明 A ↔ B A \leftrightarrow B AB 是一个 “重言式”,即 ( p → q ) ↔ ( ¬ p ∨ q ) (p \rightarrow q) \leftrightarrow (¬p \vee q) (pq)(¬pq) 是个重言式。
  • 类似地,假设现在有两个合式公式: A : p → q A: p \rightarrow q A:pq B : ¬ p ∨ q B: ¬p \vee q B:¬pq 当我们说 A ⇒ B A \Rightarrow B AB 的时候,我们需要证明 A → B A \rightarrow B AB 是一个 “重言式”,即 ( p → q ) → ( ¬ p ∨ q ) (p \rightarrow q) \rightarrow (¬p \vee q) (pq)(¬pq) 是个重言式。

官方定义 ⇒ 或 ⊨ \Rightarrow 或 \models ⇔ 或 ≡ \Leftrightarrow 或 \equiv

  • 对于一个合式公式 F F F,如果我们对它的命题变元的真值进行指派 (assignment),如果指派的结果使得 F F F 命题的真值为 T T T,那么我们称这次指派 θ \theta θ F F Fmodel;用符号 ⊨ \models 来表示
  • 如果合式公式 F F F 的所有 model 都是 合式公式 G G Gmodel,那么我们称 G G G F F F 的一个 “逻辑推论(logical consequence)”, F ⊨ G F\models G FG 或者 F ⇒ G F \Rightarrow G FG 换句话说,如果所有使得 F F F 成真的指派,也都能保证 G G G 成真,那么 G G G 就是 F F F 的逻辑推论。
  • 如果同时满足 F ⊨ G F\models G FG G ⊨ F G\models F GF 那么我们称 F F F G G G 具有相同的 models(成真指派),这时候我们也可以说 F F F G G G 逻辑等价(logical equivalent) F ≡ G F \equiv G FG

16 个基本等价式 / 命题定律

在这里插入图片描述
在这里插入图片描述

另一个版本

这个版本里面所有的单条件蕴含都写成了 ⇒ \Rightarrow ,其实应该是上一个版本中的 → \rightarrow ;所有的双条件蕴含都写成了 ⇔ \Leftrightarrow ,对应上一个版本中的 ↔ \leftrightarrow
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

重言式的替换规则

如果一个公式已知是重言式,那么将其内部的变元进行整体替换,得到的还是一个重言式。
例如,已知 A ∨ ¬ A A\vee ¬ A A¬A 是个重言式,那么我将 A A A 换成任意的变元组合 ( p → q ) ∨ ¬ ( p → q ) (p\rightarrow q)\vee ¬ (p\rightarrow q) (pq)¬(pq) 依然还是个重言式

证明公式有效性(valid) / 可满足性的(satisfiable)方法

  • 如果要证明一个合式公式 A A A u n s a t i s f i a b l e unsatisfiable unsatisfiable 的,那么就证明 当且仅当( i f f iff iff ¬ A ¬ A ¬A v a l i d valid valid
  • 同样的,如果要证明 A A A v a l i d valid valid,那么就证明当且仅当 ¬ A ¬ A ¬A u n s a t i s f i a b l e unsatisfiable unsatisfiable 的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值