文章目录
等值演算
- 当两个公式具有相同的真值表的时候,我们可以进行等价替换而不对结果的真值产生影响。
Example
p p p | q q q | p → q p \rightarrow q p→q | ¬ p ∨ q ¬p \vee q ¬p∨q |
---|---|---|---|
0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
从表格中可以看到 p → q p \rightarrow q p→q 和 ¬ p ∨ q ¬p \vee q ¬p∨q 具有相同的真值表,因此,在任何情况下,这两个合式公式都可以看做是等价的 ≡ \equiv ≡ 或者 ⇔ \Leftrightarrow ⇔,即 ( p → q ) ≡ ( ¬ p ∨ q ) (p \rightarrow q) \equiv (¬p \vee q) (p→q)≡(¬p∨q)。
Note:
- 命题逻辑的知识点中我们使用两大类符号,一类叫做逻辑联结词 ¬ , ∨ , ∧ , → , ↔ ¬, \vee, \wedge, \rightarrow, \leftrightarrow ¬,∨,∧,→,↔ 他们作用在合式公式的内部。
- 另外一类叫做元语言的符号: ⇒ 或 ⊨ \Rightarrow 或 \models ⇒或⊨ (蕴含), ⇔ 或 ≡ \Leftrightarrow 或 \equiv ⇔或≡ 等价,这些符号作用在两个 合式公式之间,比如我们上面提到的 “等价” 就代表两个合式公式具有相同的真值。
- 那么上述的两类符号到底有什么联系呢?
¬ , ∨ , ∧ , → , ↔ ¬, \vee, \wedge, \rightarrow, \leftrightarrow ¬,∨,∧,→,↔ 和 ⇒ 或 ⊨ \Rightarrow 或 \models ⇒或⊨, ⇔ 或 ≡ \Leftrightarrow 或 \equiv ⇔或≡ 之间的关系
- 假设现在有两个合式公式: A : p → q A: p \rightarrow q A:p→q 和 B : ¬ p ∨ q B: ¬p \vee q B:¬p∨q 当我们说 A ≡ B A \equiv B A≡B 的时候,我们需要证明 A ↔ B A \leftrightarrow B A↔B 是一个 “重言式”,即 ( p → q ) ↔ ( ¬ p ∨ q ) (p \rightarrow q) \leftrightarrow (¬p \vee q) (p→q)↔(¬p∨q) 是个重言式。
- 类似地,假设现在有两个合式公式: A : p → q A: p \rightarrow q A:p→q 和 B : ¬ p ∨ q B: ¬p \vee q B:¬p∨q 当我们说 A ⇒ B A \Rightarrow B A⇒B 的时候,我们需要证明 A → B A \rightarrow B A→B 是一个 “重言式”,即 ( p → q ) → ( ¬ p ∨ q ) (p \rightarrow q) \rightarrow (¬p \vee q) (p→q)→(¬p∨q) 是个重言式。
官方定义 ⇒ 或 ⊨ \Rightarrow 或 \models ⇒或⊨, ⇔ 或 ≡ \Leftrightarrow 或 \equiv ⇔或≡
- 对于一个合式公式 F F F,如果我们对它的命题变元的真值进行指派 (assignment),如果指派的结果使得 F F F 命题的真值为 T T T,那么我们称这次指派 θ \theta θ 是 F F F 的 model;用符号 ⊨ \models ⊨ 来表示
- 如果合式公式 F F F 的所有 model 都是 合式公式 G G G 的 model,那么我们称 G G G 是 F F F 的一个 “逻辑推论(logical consequence)”, F ⊨ G F\models G F⊨G 或者 F ⇒ G F \Rightarrow G F⇒G 换句话说,如果所有使得 F F F 成真的指派,也都能保证 G G G 成真,那么 G G G 就是 F F F 的逻辑推论。
- 如果同时满足 F ⊨ G F\models G F⊨G 和 G ⊨ F G\models F G⊨F 那么我们称 F F F 和 G G G 具有相同的 models(成真指派),这时候我们也可以说 F F F 和 G G G 逻辑等价(logical equivalent) F ≡ G F \equiv G F≡G
16 个基本等价式 / 命题定律
另一个版本
这个版本里面所有的单条件蕴含都写成了
⇒
\Rightarrow
⇒,其实应该是上一个版本中的
→
\rightarrow
→;所有的双条件蕴含都写成了
⇔
\Leftrightarrow
⇔ ,对应上一个版本中的
↔
\leftrightarrow
↔
重言式的替换规则
如果一个公式已知是重言式,那么将其内部的变元进行整体替换,得到的还是一个重言式。
例如,已知
A
∨
¬
A
A\vee ¬ A
A∨¬A 是个重言式,那么我将
A
A
A 换成任意的变元组合
(
p
→
q
)
∨
¬
(
p
→
q
)
(p\rightarrow q)\vee ¬ (p\rightarrow q)
(p→q)∨¬(p→q) 依然还是个重言式
证明公式有效性(valid) / 可满足性的(satisfiable)方法
- 如果要证明一个合式公式 A A A 是 u n s a t i s f i a b l e unsatisfiable unsatisfiable 的,那么就证明 当且仅当( i f f iff iff) ¬ A ¬ A ¬A 是 v a l i d valid valid。
- 同样的,如果要证明 A A A 是 v a l i d valid valid,那么就证明当且仅当 ¬ A ¬ A ¬A 是 u n s a t i s f i a b l e unsatisfiable unsatisfiable 的。