离散数学知识点总结(2):命题公式的类型

本文介绍了命题逻辑的基本概念,包括命题常量、命题变元、命题合式公式及其定义,强调了联结词的正确使用和优先级。讨论了重言式、矛盾式和可满足式的例子,指出真值表在判断命题公式类型中的应用,同时指出真值表在处理大量命题变元时的局限性。文章最后预告了将通过等值变换的方法来替代真值表进行公式类型判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

命题公式

命题常量和命题变元

  • 命题常量通常用大写字母表示,代表一个具体的命题:
    P P P:张三是法外狂徒。这是个命题常量,因为张三要么是法外狂徒,要么不是。

  • 命题变元通常用小写字母表示,是命题公式的组成部分,我们通常用命题变元来表示命题公式,因为它并不代表具体的结果,因此,我们总是需要对公式中每个命题变元的真值进行指派(assignment)然后,判断整个命题公式的真值情况。

  • p → q p \rightarrow q pq 这里的 p , q p,q p,q 实际上我们都不知道他们代表的是什么,因此在我们人为给他们指派真值之前,没有人知道 p , q p,q p,q 到底真值是多少,因此 p → q p \rightarrow q pq 的真值也暂时是个未知的。

  • 虽然我们规定了严格的大小写, 但是由于不同的书上有不同的写法,我们的材料又来自不同的地方,因此,大小写使用的较为混乱,但是并不影响理解,在这里做一下说明。
    在这里插入图片描述

命题合式公式的递归式定义(well-Formed formula)

在这里插入图片描述
在这里插入图片描述

  • 可以看到,四五之所以不是命题公式,是因为(4)中的 , , , 并不是联结词
  • (5)中的联结词使用方式是错的, ∧ → \wedge\rightarrow 的组合不是正确的联结词使用方式。

联结词的优先级

在这里插入图片描述

命题公式的种类

在这里插入图片描述

重言式 / 永真式 (常见举例)

在这里插入图片描述

矛盾式 / 不可满足式 / 永假式 (常见举例)

在这里插入图片描述

可满足式

在这里插入图片描述

可以用真值表来判断一个 合式公式 属于哪种类型

真值表判断合式公式的类型

如下图,我们想判断合式公式: ( ¬ P ∧ Q ) → ( P → R ) (¬P\wedge Q)\rightarrow(P\rightarrow R) (PQ)(PR) 为三种类型中的哪一种。下图中所示,如果整个真值表最右边的这一列的值全部为真,即,左边 P , Q , R P, Q, R P,Q,R 被任意指派(assignment)真值的时候,这个命题公式的真值始终为 t t t 那么,这个合式公式就可以被称为是一个 “重言式 / 永真式(tautology)” 的命题公式。

Note:

  • 当一个命题公式是 重言式 (tautology),我们称这个合式公式是 有效的(valid);否则如果我们能找到至少一种 P , Q , R P, Q, R P,Q,R 组合的情况使这个公式的真值为 f f f,我们把这种公式称为是 (non-valid 无效的)

  • 当一个命题公式是 矛盾式 / 永假式 (contradiction),我们称这个合式公式是 不可满足的(unsatisfiable),否则如果我们至少能找到一种 P , Q , R P, Q, R P,Q,R 组合的情况使这个公式的真值为真,我们把这种公式称为是 (satisfiable 可满足的)

  • 重言式和永假式都只是 我们对公式类型的判断,并不代表内容上的意义。比如,我们举例:

    • p p p: 张三是法外狂徒
    • p → p p \rightarrow p pp:如果张三是法外狂徒,那么张三是法外狂徒。 这是一个重言式,因为这个公式的真值永远都是 t t t, 但是这句话可以看做一句废话。

在这里插入图片描述

真值表的缺陷

对于一个真值表来说,如果我们想得到一个合式公式的真值表从而判断它的公式类型;那么如果它本身包含了 n 个命题变元,例如: ( ¬ p ∧ q ) → ( p → r ) (¬p\wedge q)\rightarrow(p\rightarrow r) (pq)(pr) 中出现了三个变元 p , q , r p,q,r p,q,r 这整个公式的真值表就要变成 2 n 2^n 2n 种指派方式(assignment)的组合;如果变元数量再增加,真值表会指数形式增长。

我们将会在下一篇文章详细讲述,如何使用 “等值变换” 的方式来代替真值表,从而判断一个合式公式的类型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值