日常学习之:在 numpy数组中挑出不是 nan 的值;判断两组数据之间是否存在显著差异

本文介绍了如何使用numpy库去除numpy数组中的NaN值,并利用scipy的ttest_ind函数进行独立样本t检验,评估两组数据间的显著差异。示例中展示了在不同数据集上的应用,强调了p值在判断差异性中的作用。
摘要由CSDN通过智能技术生成

挑出非 nan 值

import numpy as np
x = np.array([1,2,3,4,5,np.nan,3,4,np.nan])
x = x[np.logical_not(np.isnan(x))]
print(x)

[1. 2. 3. 4. 5. 3. 4.]
Process finished with exit code 0

判断两组数据的显著差异

import numpy as np
from scipy.stats import ttest_ind

x = np.array([1,2,3,4,5,6,7,8])
y = np.array([1,2,3,4,5,6,7,8])
z = np.array([8,7,6,5,4,3,2,1])

print(ttest_ind(x,y))
print(ttest_ind(y,z))
print(ttest_ind(x,z))

D:\Anaconda3\envs\data\python.exe G:/Gait_Reconstruct/步态年龄/test.py
Ttest_indResult(statistic=0.0, pvalue=1.0)
Ttest_indResult(statistic=0.0, pvalue=1.0)
Ttest_indResult(statistic=0.0, pvalue=1.0)

import numpy as np
from scipy.stats import ttest_ind

x = np.random.random_integers(0,1000,(10,))
y = np.random.random_integers(0,1000,(10,))
z = np.random.random_integers(0,1000,(15,))

print(x,"\n",y,"\n",z)
print(ttest_ind(x,y))
print(ttest_ind(y,z))
print(ttest_ind(x,z))

[ 20 374 326 461 736 664 488 216 406 569]
[580 559 605 96 378 167 822 583 549 925]
[106 311 6 105 959 469 999 950 253 988 27 59 186 627 87]
Ttest_indResult(statistic=-0.9539930303387232, pvalue=0.3527241236351204)
Ttest_indResult(statistic=0.8363315018252558, pvalue=0.4115735907403949)
Ttest_indResult(statistic=0.1269712528308796, pvalue=0.9000666802890523)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值