背景
- 这些天在补自己的微积分短板,刚好看到 MIT 教授讲微积分的系列视频,看到了人家对于 e x e^x ex 的推导豁然开朗,于是整理一下思路希望能够帮助到和我一样数学基础不怎么好的人。
- MIT 的视频
- e x e^x ex 是 人为构造 的一个函数,人们试图构造一种函数,想让这种函数的微分 d f d x \frac{df}{dx} dxdf 与其自身是一致的, d f d x = f ( x ) \frac{df}{dx}=f(x) dxdf=f(x) 我们把这个具有奇特性质函数表示为 e x e^x ex 称为 自然常数为底数的指数函数。
- 在下面的内容中我们讨论两个问题:
- 这种奇特的函数如何构造出来的
- 这种奇特的函数为什么最终被划定为指数函数
如何构造
- 假设这个函数在 0 0 0 处的值 f ( 0 ) = 1 f(0)=1 f(0)=1
- 为了更好地演示这个函数 f ( x ) f(x) f(x) 的构造过程,我们用下面的两行来表示,第一行表示的是 f ( x ) f(x) f(x) 的构造过程,第二行表示的是 d f d x \frac{df}{dx} dxdf 紧随其后的演变过程
第一行: f ( x ) = 1 f(x)=1 f(x)=1
第二行: d f d x = 1 \frac{df}{dx}=1 dxdf=1
- 当 d f d x = 1 \frac{df}{dx}=1 dxdf=1 的时候,就强迫 f ( x ) f(x) f(x) 中就必须有一项 x x x,否则 f ( x ) f(x) f(x) 求导之后就是 0 0 0 了,为了保证求导后能够有 1 1 1 这个项,所以 f ( x ) f(x) f(x) 进化成了:
f ( x ) = 1 + x f(x)=1+x f(x)=1+x
- 为了保持一致,
d f d x = 1 + x \frac{df}{dx}=1+x dxdf=1+x
- 而因为 d f d x \frac{df}{dx} dxdf 中出现了 x x x,这就导致 f ( x ) f(x) f(x) 必须再多一个 1 2 x 2 \frac{1}{2}x^2 21x2 因为只有这个东西求导之后为 x x x,因此
f ( x ) = 1 + x + 1 2 x 2 f(x)=1+x+\frac{1}{2}x^2 f(x)=1+x+21x2
- 同样滴, d f d x \frac{df}{dx} dxdf 也得要这个 1 2 x 2 \frac{1}{2}x^2 21x2 项,所以:
d f d x = 1 + x + 1 2 x 2 \frac{df}{dx}=1+x+\frac{1}{2}x^2 dxdf=1+x+21x2
- 数个步骤之后,两行公式变成了:
第一行: f ( x ) = 1 + x + 1 2 x 2 + 1 6 x 3 + 1 24 x 4 f(x)=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\frac{1}{24}x^4 f(x)=1+x+21x2+61x3+241x4
第二行: d f d x = 1 + x + 1 2 x 2 + 1 6 x 3 \frac{df}{dx}=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3 dxdf=1+x+21x2+61x3
- 到这一步, d f d x \frac{df}{dx} dxdf 还是要加上那个 1 24 x 4 \frac{1}{24}x^4 241x4 才能与 f ( x ) f(x) f(x) 保持一致,按照这个势头下去,这是一个永远追逐下去的演变,无论是 f ( x ) f(x) f(x) 还是 d f d x \frac{df}{dx} dxdf 都在增加无数个后项,而 f ( x ) f(x) f(x) 永远都多一项。
- 但是让我们先看一下规律,假设我们给 f ( x ) f(x) f(x) 中每一项都加一个索引,即:第 0 0 0 项,第 1 1 1 项,第 2 2 2 项…第 n n n 项,那么 f ( x ) = 1 + x + 1 2 x 2 + 1 6 x 3 + 1 24 x 4 + . . . + 1 n ( n − 1 ) ( n − 2 ) . . . × 1 x n f(x)=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\frac{1}{24}x^4+...+\frac{1}{n(n-1)(n-2)...\times1}x^{n} f(x)=1+x+21x2+61x3+241x4+...+n(n−1)(n−2)...×11xn
- 同时
d
f
d
x
\frac{df}{dx}
dxdf 紧随其后:
d f d x = 1 + x + 1 2 x 2 + 1 6 x 3 + 1 24 x 4 + . . . + 1 ( n − 1 ) ( n − 2 ) . . . × 1 x n − 1 \frac{df}{dx}=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\frac{1}{24}x^4+...+\frac{1}{(n-1)(n-2)...\times1}x^{n-1} dxdf=1+x+21x2+61x3+241x4+...+(n−1)(n−2)...×11xn−1 - 现在 d f d x \frac{df}{dx} dxdf 就比 f ( x ) f(x) f(x) 少一项,只要加上这一项,马上 d f d x \frac{df}{dx} dxdf 就会达到和 f ( x ) f(x) f(x) 完全一样的形态。但问题是,虽然看起来这个循环(互相追逐)是要永远没头地持续下去了,而且 f ( x ) f(x) f(x) 永远多一项,但是这里体现的数学之美妙在于: x n x^n xn 的增长速度远远小于他的分母,即 n ( n − 1 ) ( n − 2 ) . . . × 1 n(n-1)(n-2)...\times 1 n(n−1)(n−2)...×1 所以,在不知道经过了多少次拖尾之后,这个多出来的的一项在求极限的时候,就是 0 0 0,因此 f ( x ) = d f d x f(x)=\frac{df}{dx} f(x)=dxdf
- 所以我们现在构造出了 e x e^x ex ,而他的导数等于它本身。
为什么 f ( 0 ) = 1 f(0)=1 f(0)=1
- 假设 f ( 0 ) = 0 f(0)=0 f(0)=0 那么:
f ( x ) = 0 f(x)=0 f(x)=0
d f d x = 0 \frac{df}{dx}=0 dxdf=0
- 这种情况下 f ( x ) f(x) f(x) 已经与 d f d x \frac{df}{dx} dxdf 相等了。。。那这样的话 f ( x ) f(x) f(x) 不需要再增加后面的项来保持 f ( x ) = d f d x f(x)=\frac{df}{dx} f(x)=dxdf 这个性质了,因为已经成立了
- 假设 f ( 0 ) = 5 f(0)=5 f(0)=5
f ( x ) = 5 f(x)=5 f(x)=5
d f d x = 5 \frac{df}{dx}=5 dxdf=5
- 那么接下来 f ( x ) = 5 + 5 x . . . f(x)=5+5x... f(x)=5+5x... 这其实和 f ( x ) = 1 + x f(x)=1+x f(x)=1+x 并没有本质的区别
其实,我也不知道为什么这个 f ( x ) f(x) f(x) 要从 1 1 1 开始,但是假设你是从 1 1 1 开始,那么你就可以认为在这种情况下 f ( x ) f(x) f(x) 要保持 d f d x \frac{df}{dx} dxdf一致就得按照第一部分的推导来得到 e x e^x ex
为什么 e x e^x ex 这个函数要写成指数函数形式
-
假设我的那个 f ( x ) f(x) f(x) 目前不知道该写成一个什么形式的函数,那么为什么最终就选定了将这个 f ( x ) f(x) f(x) 归为一个指数函数 e x e^x ex 了呢?那肯定是因为他具备指数函数的性质。下面就让我们看一下 e x e^x ex 是否具有指数函数的性质。
-
现在有一个 e x e^x ex 一个 e y e^y ey 如果是指数函数,那么 e x e y = e ( x + y ) e^x e^y=e^{(x+y)} exey=e(x+y)
-
首先还是先展开:
e x = 1 + x + 1 2 x 2 ‾ + 1 6 x 3 + 1 24 x 4 + . . . + 1 n ( n − 1 ) ( n − 2 ) . . . × 1 x n e^x=\underline{1+x+\frac{1}{2}x^2}+\frac{1}{6}x^3+\frac{1}{24}x^4+...+\frac{1}{n(n-1)(n-2)...\times1}x^{n} ex=1+x+21x2+61x3+241x4+...+n(n−1)(n−2)...×11xn
e y = 1 + y + 1 2 y 2 ‾ + 1 6 y 3 + 1 24 y 4 + . . . + 1 n ( n − 1 ) ( n − 2 ) . . . × 1 y n e^y=\underline{1+y+\frac{1}{2}y^2}+\frac{1}{6}y^3+\frac{1}{24}y^4+...+\frac{1}{n(n-1)(n-2)...\times1}y^{n} ey=1+y+21y2+61y3+241y4+...+n(n−1)(n−2)...×11yn -
为了简单来看下,我们只取每个函数的前三项做一下相乘:
e x e y = 1 + y + 1 2 y 2 + x + x y + 1 2 x y 2 + 1 2 x 2 + 1 2 x 2 y + 1 2 x 2 y 2 e^xe^y=1+y+\frac{1}{2}y^2\\+x+xy+\frac{1}{2}xy^2\\+\frac{1}{2}x^2+\frac{1}{2}x^2y+\frac{1}{2}x^2y^2 exey=1+y+21y2+x+xy+21xy2+21x2+21x2y+21x2y2 -
化简一下:
e x e y = 1 + x + y + x y + 1 2 ( x 2 + y 2 ) + 1 2 x y 2 + 1 2 x 2 y + 1 2 x 2 y 2 e^xe^y=1+x+y+xy+\frac{1}{2}(x^2+y^2)+\frac{1}{2}xy^2+\frac{1}{2}x^2y+\frac{1}{2}x^2y^2 exey=1+x+y+xy+21(x2+y2)+21xy2+21x2y+21x2y2
e x e y = 1 + ( x + y ) + 1 2 ( x + y ) 2 ‾ + 1 2 x y 2 + 1 2 x 2 y + 1 2 x 2 y 2 e^xe^y=\underline{1 + (x+y) + \frac{1}{2}(x+y)^2}+\frac{1}{2}xy^2+\frac{1}{2}x^2y+\frac{1}{2}x^2y^2 exey=1+(x+y)+21(x+y)2+21xy2+21x2y+21x2y2 -
下划线标出的部分就是 e ( x + y ) e^{(x+y)} e(x+y) 中的前三项,后面的那些多余的项如果你把 e x e^x ex 和 e y e^y ey 的更多项展开,也会发现是一样的符合这个规律,所以: e x e y = e ( x + y ) e^xe^y=e^{(x+y)} exey=e(x+y) 因此这符合指数函数的性质。
-
而且 e x e^x ex 在 x = 0 x=0 x=0 时也确实 = 1 =1 =1
-
所以我们把 e x e^x ex 称为自然底数的指数函数。
求出 e 的具体数值
e x = 1 + x + 1 2 x 2 + 1 6 x 3 + 1 24 x 4 + . . . + 1 n ( n − 1 ) ( n − 2 ) . . . × 1 x n e^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\frac{1}{24}x^4+...+\frac{1}{n(n-1)(n-2)...\times1}x^{n} ex=1+x+21x2+61x3+241x4+...+n(n−1)(n−2)...×11xn
- 事实上,之所以 e = 2.71828 e=2.71828 e=2.71828 是因为当你拿到上面这个 e x e^x ex 的指数级数公式,将 1 1 1 带入就可以得到:
e 1 = 1 + 1 + 1 2 1 2 + 1 6 1 3 + 1 24 1 4 + . . . + 1 n ( n − 1 ) ( n − 2 ) . . . × 1 1 n e^1=1+1+\frac{1}{2}1^2+\frac{1}{6}1^3+\frac{1}{24}1^4+...+\frac{1}{n(n-1)(n-2)...\times1}1^{n} e1=1+1+2112+6113+24114+...+n(n−1)(n−2)...×111n
- 这个级数是收敛的(这个我们已经说过,因为越往后他的值就越往 0 收敛),所以这个数肯定是大于 e 1 = 1 + 1 + 1 2 1 2 + 1 6 1 3 + 1 24 1 4 e^1=1+1+\frac{1}{2}1^2+\frac{1}{6}1^3+\frac{1}{24}1^4 e1=1+1+2112+6113+24114 但一定是小于 3 3 3 的
- 经过更加精确的计算之后,你就可以得到 e = 2.71828 e=2.71828 e=2.71828
e 在微积分中的应用(复利的极限)
- 假设现在你在银行里存了 1 1 1 块钱,按照每年 100 % 100\% 100% 的利息支付给你,你的钱在经过一年之后会变成 2 2 2 块钱。经过 n n n 年之后会变成 2 n 2^n 2n 元钱
- 但是如果银行比较勤快,每天给你计算一次利息,但是还是按照每年复利 100 % 100\% 100% 的利率。也就是每天复利 1 365 \frac{1}{365} 3651 那么这个时候你第二天获得的金额就是 ( 1 + 1 365 ) 2 (1+\frac{1}{365})^2 (1+3651)2 一年之后,你的金额会变成 ( 1 + 1 365 ) 365 (1+\frac{1}{365})^{365} (1+3651)365,这个数肯定是大于 2 2 2 的。也就是说,在年复利率在定值的时候,银行给你算的越勤快(按天),你实际获得的钱就越多。那这个钱可以无限大么?不可以,那他的极限是多少呢?
- 假设银行计算你的收益无限频繁,导致一年内给你算了 N N N 次,那么在年复利率 100 % 100\% 100% 的情况下,你的收益最多是 ( 1 + 1 N ) N (1+\frac{1}{N})^N (1+N1)N 而这个数的极限是 e e e,也就是说 1 1 1 元钱在年复利率 100 % 100\% 100% 的情况下的最大收益是第二年变成 2.7 2.7 2.7 元钱