KNN的基本工作原理,以及其与支持向量机,cart决策树和贝叶斯的一个效果区分

近朱者赤,近墨者黑”可以说是 KNN 的工作原理。
整个计算过程分为三步:

  1. 计算待分类物体与其他物体之间的距离;
  2. 统计距离最近的 K 个邻居;
  3. 对于 K 个最近的邻居,它们属于哪个分类最多,待分类物体就属于哪一类。

在 KNN 算法中,还有一个重要的计算就是关于距离的度量。两个样本点之间的距离代表了这两个样本之间的相似度。距离越大,差异性越大;距离越小,相似度越大。
关于距离的计算方式有下面五种方式:欧氏距离;曼哈顿距离;闵可夫斯基距离;切比雪夫距离;余弦距离。
在这里插入图片描述

在这里插入图片描述
这里,我们使用构造函数 KNeighborsClassifier(n_neighbors=5, weights=‘uniform’, algorithm=‘auto’, leaf_size=30),这里有几个比较主要的参数,我分别来讲解下:

1.n_neighbors:即 KNN 中的 K 值,代表的是邻居的数量。K 值如果比较小,会造成过拟合。如果 K 值比较大,无法将未知物体分类出来。一般我们使用默认值 5。
2.weights:是用来确定邻居的权重,有三种方式:weights=uniform,代表所有邻居的权重相同;weights=distance,代表权重是距离的倒数,即与距离成反比;自定义函数,你可以自定义不同距离所对应的权重。大部分情况下不需要自己定义函数
。3.algorithm:用来规定计算邻居的方法,它有四种方式:algorithm=auto,根据数据的情况自动选择适合的算法,默认情况选择 auto;algorithm=kd_tree,也叫作 KD 树,是多维空间的数据结构,方便对关键数据进行检索,不过 KD 树适用于维度少的情况,一般维数不超过 20,如果维数大于 20 之后,效率反而会下降;algorithm=ball_tree,也叫作球树,它和 KD 树一样都是多维空间的数据结果,不同于 KD 树,球树更适用于维度大的情况;algorithm=brute,也叫作暴力搜索,它和 KD 树不同的地方是在于采用的是线性扫描,而不是通过构造树结构进行快速检索。当训练集大的时候,效率很低。
4.leaf_size:代表构造 KD 树或球树时的叶子数,默认是 30,调整 leaf_size 会影响到树的构造和搜索速度。
我们在做多项式朴素贝叶斯分类的时候,传入的数据不能有负数。因为 Z-Score 会将数值规范化为一个标准的正态分布,即均值为 0,方差为 1,数值会包含负数。因此我们需要采用 Min-Max 规范化,将数据规范化到[0,1]范围内。

# 采用Min-Max规范化
mm = preprocessing.MinMaxScaler()train_mm_x = mm.fit_transform(train_x)test_mm_x = mm.transform(test_x)# 创建Naive Bayes分类器
mnb = MultinomialNB()mnb.fit(train_mm_x, train_y)
predict_y = mnb.predict(test_mm_x)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任任任任小娇在学python的路上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值