昇思第24天

扩散模型(Diffusion Models)笔记

1. 概述
  • 定义:扩散模型是一种生成模型,通过逐步去噪的方式生成数据。
  • 应用:在无条件和有条件的图像、音频、视频生成领域取得了显著成果。
2. 背景与历史
  • 起源:最初在2015年提出(Sohl-Dickstein et al.)。
  • 改进:2019年和2020年,斯坦福大学和Google Brain分别对方法进行了改进。
3. 主要模型和成果
  • OpenAI:GLIDE和DALL-E 2
  • 海德堡大学:潜在扩散模型
  • Google Brain:图像生成模型
4. 实现细节
  • 基础模型:基于去噪扩散概率模型(DDPM)。
  • 迁移工作:Phil Wang的PyTorch实现被迁移到MindSpore AI框架上。
5. 理论基础
  • 扩散过程:从噪声数据开始,通过一系列的去噪步骤逐步生成目标数据。
  • 数学模型:利用潜在变量模型进行建模,训练过程中不断优化去噪的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值