扩散模型(Diffusion Models)笔记
1. 概述
- 定义:扩散模型是一种生成模型,通过逐步去噪的方式生成数据。
- 应用:在无条件和有条件的图像、音频、视频生成领域取得了显著成果。
2. 背景与历史
- 起源:最初在2015年提出(Sohl-Dickstein et al.)。
- 改进:2019年和2020年,斯坦福大学和Google Brain分别对方法进行了改进。
3. 主要模型和成果
- OpenAI:GLIDE和DALL-E 2
- 海德堡大学:潜在扩散模型
- Google Brain:图像生成模型
4. 实现细节
- 基础模型:基于去噪扩散概率模型(DDPM)。
- 迁移工作:Phil Wang的PyTorch实现被迁移到MindSpore AI框架上。
5. 理论基础
- 扩散过程:从噪声数据开始,通过一系列的去噪步骤逐步生成目标数据。
- 数学模型:利用潜在变量模型进行建模,训练过程中不断优化去噪的准确性。