支持向量机(Support Vector Machine,SVM)是一种监督学习模型,适用于分类和回归任务。SVM 尤其擅长处理小样本、高维度数据,以及复杂的分类任务。其基本思想是找到最佳的超平面将不同类别分开,并最大化两类之间的间隔(Margin)。
支持向量机的工作原理
- 超平面:在特征空间中将不同类别分开的决策边界。
- 支持向量:离超平面最近的训练样本,决定超平面的方向和位置。
- 核函数:
- 线性核:适用于线性可分问题。
- 多项式核:适用于非线性数据。
- 高斯核(RBF 核):适用于复杂非线性数据。
Python 实现:SVM 分类
我们可以使用 scikit-learn
库来实现 SVM 分类器。
案例分析:鸢尾花分类
Python 实现:
# 导入所需库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建 SVM 模型
svm = SVC(kernel='linear', C=1, random_state=42)
svm.fit(X_train, y_train)
# 预测测试集
y_pred = svm.predict(X_test)
# 输出分类报告和混淆矩阵
print("Classification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))
print("Confusion Matrix:")
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
# 输出准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
案例分析:使用非线性核(RBF 核)进行分类
Python 实现:
# 导入所需库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建 SVM 模型(使用 RBF 核)
svm_rbf = SVC(kernel='rbf', C=1, gamma=0.1, random_state=42)
svm_rbf.fit(X_train, y_train)
# 预测测试集
y_pred_rbf = svm_rbf.predict(X_test)
# 输出分类报告和混淆矩阵
print("\nClassification Report (RBF Kernel):")
print(classification_report(y_test, y_pred_rbf, target_names=iris.target_names))
print("Confusion Matrix (RBF Kernel):")
cm_rbf = confusion_matrix(y_test, y_pred_rbf)
sns.heatmap(cm_rbf, annot=True, fmt="d", cmap="Blues", xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
# 输出准确率
accuracy_rbf = accuracy_score(y_test, y_pred_rbf)
print(f"Accuracy (RBF Kernel): {accuracy_rbf:.2f}")
Python 实现:SVM 回归
支持向量机还可以用于回归问题,称为支持向量回归(Support Vector Regression,SVR)。
案例分析:波士顿房价预测
Python 实现:
# 导入所需库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import matplotlib.pyplot as plt
# 加载波士顿房价数据集
boston = datasets.load_boston()
X = boston.data
y = boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建 SVR 模型(使用 RBF 核)
svr_rbf = SVR(kernel='rbf', C=1, gamma=0.1)
svr_rbf.fit(X_train, y_train)
# 预测测试集
y_pred_rbf = svr_rbf.predict(X_test)
# 输出性能指标
mse = mean_squared_error(y_test, y_