Python实战开发及案例分析(15)—— 支持向量机

        支持向量机(Support Vector Machine,SVM)是一种监督学习模型,适用于分类和回归任务。SVM 尤其擅长处理小样本、高维度数据,以及复杂的分类任务。其基本思想是找到最佳的超平面将不同类别分开,并最大化两类之间的间隔(Margin)。

支持向量机的工作原理

  1. 超平面:在特征空间中将不同类别分开的决策边界。
  2. 支持向量:离超平面最近的训练样本,决定超平面的方向和位置。
  3. 核函数
    • 线性核:适用于线性可分问题。
    • 多项式核:适用于非线性数据。
    • 高斯核(RBF 核):适用于复杂非线性数据。

Python 实现:SVM 分类

        我们可以使用 scikit-learn 库来实现 SVM 分类器。

案例分析:鸢尾花分类

Python 实现:

# 导入所需库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建 SVM 模型
svm = SVC(kernel='linear', C=1, random_state=42)
svm.fit(X_train, y_train)

# 预测测试集
y_pred = svm.predict(X_test)

# 输出分类报告和混淆矩阵
print("Classification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))

print("Confusion Matrix:")
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()

# 输出准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
案例分析:使用非线性核(RBF 核)进行分类

Python 实现:

# 导入所需库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建 SVM 模型(使用 RBF 核)
svm_rbf = SVC(kernel='rbf', C=1, gamma=0.1, random_state=42)
svm_rbf.fit(X_train, y_train)

# 预测测试集
y_pred_rbf = svm_rbf.predict(X_test)

# 输出分类报告和混淆矩阵
print("\nClassification Report (RBF Kernel):")
print(classification_report(y_test, y_pred_rbf, target_names=iris.target_names))

print("Confusion Matrix (RBF Kernel):")
cm_rbf = confusion_matrix(y_test, y_pred_rbf)
sns.heatmap(cm_rbf, annot=True, fmt="d", cmap="Blues", xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()

# 输出准确率
accuracy_rbf = accuracy_score(y_test, y_pred_rbf)
print(f"Accuracy (RBF Kernel): {accuracy_rbf:.2f}")

Python 实现:SVM 回归

        支持向量机还可以用于回归问题,称为支持向量回归(Support Vector Regression,SVR)。

案例分析:波士顿房价预测

Python 实现:

# 导入所需库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import matplotlib.pyplot as plt

# 加载波士顿房价数据集
boston = datasets.load_boston()
X = boston.data
y = boston.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建 SVR 模型(使用 RBF 核)
svr_rbf = SVR(kernel='rbf', C=1, gamma=0.1)
svr_rbf.fit(X_train, y_train)

# 预测测试集
y_pred_rbf = svr_rbf.predict(X_test)

# 输出性能指标
mse = mean_squared_error(y_test, y_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾贾乾杯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值