题目描述
有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)
这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。
我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树
2 5
\ /
3 4
\ /
1
现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。
给定需要保留的树枝数量,求出最多能留住多少苹果。
输入输出格式
输入格式:
第1行2个数,N和Q(1<=Q<= N,1<N<=100)。
N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。
每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。
每根树枝上的苹果不超过30000个。
输出格式:
一个数,最多能留住的苹果的数量。
输入输出样例
输入样例#1:
5 2 1 3 1 1 4 10 2 3 20 3 5 20
输出样例#1:
21
我好饿啊
题解都写在注释里了
//这是一道树形dp
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n,q;
int b[103][103],f[103][103];
int l[103],r[103],a[103];
int build(int x)//建树
{
for(int i = 1;i <= n;i++)//先建左子树
{
if(b[x][i] >= 0)
{
l[x] = i;//存这棵树的左儿子
a[i] = b[x][i];
b[x][i] = -1;//将这两个点标记为已访问过
b[i][x] = -1;
build(i);
break;//二叉树,所以找到一个儿子就退出
}
}
for(int i = 1;i <= n;i++)
{
if(b[x][i] >= 0)
{
r[x] = i;//存右儿子
a[i] = b[x][i];
b[x][i] = -1;
b[i][x] = -1;
build(i);
break;
}
}
}
int dp(int i,int j)
{
if(j == 0)return 0;//如果一个点也不取,答案就为0
if(l[i] == 0 && r[i] == 0)return a[i];//到了叶节点就直接返回它的值
if(f[i][j] > 0)return f[i][j];//如果之前已经算过了,现在就不用再算一遍了
for(int k = 0;k <= j - 1;k++)//枚举左节点中存在的节点数k
{
f[i][j] = max(f[i][j],dp(l[i],k) + dp(r[i],j - k - 1) + a[i]);
}
return f[i][j];
}
int main()
{
scanf("%d%d",&n,&q);
q++;//保留q个树枝就是保留q+1个节点
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= n;j++)
{
b[i][j] = -1;
}
}
for(int i = 1;i <= n - 1;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
b[x][y] = z;
b[y][x] = z;
}
build(1);
printf("%d",dp(1,q));
return 0;
}