定义一个二维数组:
int maze[5][5] = {
0,1,0,0,0,
0,1,0,1,0,
0,0,0,0,0,
0,1,1,1,0,
0,0,0,1,0,
};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
【输入】
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
【输出】
左上角到右下角的最短路径,格式如样例所示。
【输入样例】
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
【输出样例】
(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)
# include<iostream>
# include<queue>
# include<cstring>
# include<vector>
using namespace std;
int maze[5][5];
struct point{
int r; //行
int c; //列
point(int rr,int cc)
{
r=rr;
c=cc;
}
point()
{
}
};
int dr[]={0,-1,0,1};
int dc[]={1,0,-1,0};
int dis[5][5];
point pre[5][5];
point walk(point u,int i)
{
return point(u.r+dr[i],u.c+dc[i]);
}
bool isleagle(point ss)
{
return ss.r>=0&&ss.r<5&&ss.c<5&&ss.c>=0;
}
/*void print(point u,point v) //从v->u的最短路径
{
if(u.r==v.r&&u.c==v.c)
{
cout<<"("<<u.r<<", "<<u.c<<")"<<endl;
}
else
{
print(pre[u.r][u.c],v);
cout<<"("<<u.r<<", "<<u.c<<")"<<endl;
}
}*/
//非递归输出从u到v的最短路径
void print(point v,point u) //从目标点逆序追溯到初始节点
{
vector<point> ss;
for(;;)
{
ss.push_back(v);
if(dis[v.r][v.c]==0)
break;
v=pre[v.r][v.c];
}
for(int i=ss.size()-1;i>=0;i--)
{
cout<<"("<<ss[i].r<<", "<<ss[i].c<<")"<<endl;
}
}
void bfs(point ww)
{
queue<point> q;
memset(dis,-1,sizeof(dis)); //初始化距离,且用于表示为访问的点 即dis[u][v]<0表示点(u,v)未访问
dis[ww.r][ww.c]=0;//初始节点距离为0;
q.push(ww);
while(!q.empty())
{
point u=q.front();q.pop();
if(u.c==4&&u.r==4)
{
print(u,ww);
return ;
}
for(int i=0;i<4;i++)
{
point v=walk(u,i);
if(dis[v.r][v.c]<0&&isleagle(v)&&!maze[v.r][v.c])
{
dis[v.r][v.c]=dis[u.r][u.c]+1;
pre[v.r][v.c]=u;
q.push(v);
}
}
}
}
int main()
{
point ww(0,0);
for(int i=0;i<5;i++)
for(int j=0;j<5;j++)
cin>>maze[i][j];
bfs(ww);
return 0;
}
总结
(1)bfs需要构建广度优先搜索树,构建出广度优先搜索树,再去遍历广度优先搜索树,从而解决问题.