【强化学习】demo系列——基于gym自定义RL环境

本文详细介绍了如何使用Gym库创建一个自定义的强化学习环境,包括Env类的框架、方法实现(如初始化、重置、步进和可视化),以及如何将环境注册到Gym库和实际使用。通过实例演示了一个资源分配场景的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

gym是许多强化学习框架都支持了一种常见RL环境规范,实现简单,需要重写的api很少也比较通用。

本文旨在给出一个简单的基于gym的自定义单智能体强化学习环境demo


一、Gym环境类

1.1 gym.Env类框架

首先给出一个gym环境类的基本框架,继承gym.Env类,所列出来的方法均为必须实现的方法。我们一个一个方法简单介绍,

import logging
import gym
import numpy as np
from gym.utils import seeding
import math

logger = logging.getLogger(__name__)

class TestEnv(gym.Env):

    def __init__(self):
        self.state = 0
    def reset(self,seed, options,infos=False):
    	self.state =0
    def step(self, action):   
        return state, reward, Done, Truncate,info
	def render(self):
		visual_demo()
  

1.2 初始化方法"__init__"

init”方法是实例化对象时会自动执行的代码,在这里面可以定义好RL的观察空间(如果和状态空间不同的话可以加上状态空间)、动作空间、以及折扣因子等等参数,必须重写。比如:

 def __init__(self):
        # 基本设置
        self.observation_space = gym.spaces.Box(low=0, high=1, shape=(2, 2), dtype=np.float32)  # 连续状态空间 2X2
        self.action_space = gym.spaces.Discrete(2)    # 离散一维动作空间 0,1
        # self.action_space = gym.spaces.MultiDiscrete([ 5, 2, 2 ]) # 多维离散动作空间, 第一维有5个动作、第二维有2个动作..
        self.state = None # state for rl
        self.gamma = 1  # 折扣因子 
        # self.setting = Setting() # 实例化RL问题对象,可以将具体场景的RL问题相关设置打包放在Setting中,gym环境类只从里面取出状态、输入动作获得奖励。这样的话场景设置与rl设置可以比较清楚地分开。(仅个人编程习惯)

gym.spaces类给出了很多空间可供选择,这里动作状态空间实现上并无区别,要在初始化方法里明显指定这两个空间。

1.3 重置方法reset()

reset()方法也是必须重写的方法,它在每次

### ROS Gazebo 强化学习教程与实现方法 #### 创建仿真环境 为了在ROS和Gazebo环境中实施强化学习,创建一个稳定的模拟平台至关重要。通过执行特定命令可以启动所需的软件包来构建此环境[^1]: ```bash roslaunch ur5_gripper_moveit_config demo_gazebo.launch ``` 这会初始化带有UR5机械臂及其夹爪的MoveIt配置文件,在Gazebo中加载相应的模型并开启RViz用于可视化。 #### 集成高级图形技术提升训练效率 对于涉及复杂感知任务的应用场景而言,采用先进的图形处理能力有助于提高仿真的真实度以及数据收集的质量。NVIDIA RTX技术支持下的Isaac Sim提供了实时光线追踪功能,增强了图像的真实性和视觉反馈精度,从而改善了基于视觉输入的学习过程的效果[^2]。 #### 准备开发环境 针对具体硬件设备如宇树四足机器人的应用案例,则需先准备好必要的依赖库和服务框架。例如,当计划部署强化学习算法GenLoco时,除了常规的Docker容器设置外,还需额外安装Boost库以满足某些C++特性需求[^3]: ```bash sudo apt-get update && sudo apt-get install libboost-all-dev ``` 以上步骤确保了后续编程工作的顺利开展,并为接下来的设计工作奠定了坚实的基础。 #### 设计强化学习代理 设计适用于目标系统的RL Agent涉及到多个方面的工作,包括但不限于状态空间定义、动作集规划、奖励函数设定等核心要素的选择。这些参数直接影响到最终解决方案的有效性及泛化性能表现。通常情况下,研究者们会选择开源工具箱(如Stable Baselines3)作为快速原型搭建的理想选择之一。 #### 构建自定义 Gym 环境接口 为了让现有的深度增强学习框架更好地适配于所选物理引擎(Gazebo),往往需要开发者自行编写符合OpenAI Gym标准API形式的状态观测器与控制器组件。此类模块负责将连续变化的实际世界信号转换成为离散数值序列供上层决策单元调用;反之亦然——接收来自策略网络发出的操作指令并通过发布ROS话题消息的形式传达给下位机执行机构完成相应运动操作。 #### 训练与评估 一旦完成了上述准备工作之后便进入了最为关键也是最耗时的一个环节—即迭代优化阶段。在此期间内,研究人员应当密切关注实验进展状况,适时调整超参取值范围直至达到预期指标为止。与此同时,借助TensorBoard这类可视化调试辅助手段可以帮助我们更加直观地理解整个探索历程中存在的潜在规律特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值