CANN媒体数据处理

本文介绍了CANN媒体数据处理在AI应用中的重要性,特别是使用昇腾AI处理器进行媒体数据处理的高效优势。通过NPU加速,数据处理效率可以得到显著提升。文章详细阐述了如何在专用芯片上学习和实践媒体数据处理,包括媒体数据的类型、应用场景、处理流程,并提供了学习路径和实验操作指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CANN媒体数据处理

1.为什么我们要学习CANN的媒体数据处理

当然是速度快
媒体数据处理在不同的应用里面有不同的含义,今天我们说的媒体数据处理主要是指开发AI应用,为模型制造合适的数据,和模型推理完后后处理的一系列操作,一般包括图片的解码,编码,缩放,裁剪,视频的解码编码等等操作。
但是对深度学习了解一点的朋友可能都知道我们一般会用opencv等加速数据的处理,既然有解决办法了,再学习一种新的,有点多余吧?

NO,NO,No

我们都了解GPU可以加速神经网络模型的训练和推理,但是CPU也行啊,但是你了解他们之间的速度差异吗?二者效率相差可能达到几十倍甚至是上百倍,并不是CPU太逊了,也不是GPU太强了,这两种都是计算机的硬件都有着不同的特点.
CPU的可以形象的理解为有25%的ALU(运算单元)、有25%的Control(控制单元)50%的Cache(缓存单元)
GPU可以形象的理解为90%的ALU(运算单元)5%的Control(控制单元)5%的Cache(缓存单元)
二者天然就有非常大的差异,然而各种数据处理运算都要有ALU完成,但是CPU为了完成一系列复杂的控制功能,运算单元的数量相比于GPU其实很少,所以面对高密度的计算任务时GPU就有天然的优势。这就是硬件优势。
然而我们的主角昇腾AI处理器是NPU,是一种相比于GPU更加适合AI运算的硬件,通过NPU的加速又可以实现数量级的效率提升。因此数据处理的操作在NPU上进行专门的加速,就可以达到数倍提升效率的成果。当需要处理的数据比较多的时候,优势就会进一步体现。

2.在专门的芯片上进行媒体数据处理这么厉害,我要怎么学习呢

别急一步一步来 调皮

1.第一招,摸清敌情

媒体数据是什么视频链接

媒体数据都可以应用在哪些方面视频链接

媒体数据处理在接口调用的流程中位置视频链接

位置

2.第二招,逐个击破

在计算机视觉领域我们处理的主要是图片和视频,因此我们先学习一下JPEG图片的编码和解码

  1. 先来个视频了解一下吧 老谭电音放送ACL数据预处理链接

  2. 然后再来个实验,操作一下,开开眼,过过瘾.[实验链接](昇腾CANN系列课程-AscendCL特性之图像和视频编解码(C++)-昇腾社区 (hiascend.com))

该体验的,观看的都已经完成了,下面该写代码了,诶嘿嘿…代码来喽!!

写代码最重要的就是讲究一个清楚流程,那么流程图它来喽

首先就是创建数据处理的通道,你可以把它理解为一个专为处理媒体数据的生产线,在这个生产线上会对媒体数据(图片,视频)进行加工

//1.创建和销毁图片数据处理的通道。
dvppChannelDesc_ = acldvppCreateChannelDesc();
aclError ret = acldvppCreateChannel(dvppChannelDesc_);
acldvppDestroyChannel(dvppChannelDesc_);

然后要为生产线准备原材料,也就是图片或者视频的源数据(把数据加载到显存里面)

//调用aclrtGetRunMode接口获取软件栈的运行模式,如果调用aclrtGetRunMode接口获取软件栈的运行模式为ACL_HOST,则需要通过aclrtMemcpy接口将输入图片数据传输到Device,数据传输完成后,需及时释放内存;否则直接申请并使用Device的内存
aclrtRunMode runMode;
ret = aclrtGetRunMode(&runMode);
if(runMode == ACL_HOST){
    //申请Host内存inputHostBuff,并将
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值