我的深度学习过程,你可以借鉴我的方法,该方法对初学者友好

本文提供了一条适合初学者的深度学习学习路径,包括观看李飞飞和吴恩达的基础课程了解机器学习概念,学习Pytorch入门及实战,跟随李宏毅的课程巩固理解,以及关注最新技术和代码复现来提升编程能力。强调动手实践和自我学习的重要性。
摘要由CSDN通过智能技术生成


能够进行深度学习的工作是一件令人激动的事情,但同时也是一件令初学者懊恼的事情,我的教程是为了告诉你入门深度学习并不是一件难事,BUT Your Patience.

本教程假设你已经可以熟练使用Python了,如果你还不会Python请移步该链接学习:黑马程序员Python教程600集 建议从P139看起(程序注释01-注释的作用),之前的内容你自己觉得有必要就挑着看,同理后面的内容也可以根据熟练度挑着看或跳着看!

1.观看李飞飞和吴恩达的机器学习系列课程

BUT 你需要知道的是,这两位的课程并不需要完全掌握,看他们的目的是为了让你从总体上了解机器学习的实施过程,你完全可以按照你的节奏去看,不必死扣其细节,相信我你没时间也扣不明白。

我一直认为在进行一项未知的工作之前,能够从总体上了解其实施流程,有助于你对自己的进度进行评估,这会让你有种"把握"住它的感觉,进而不会对未来的学习感到迷茫,因为你知道自己该学什么,你甚至会主动去寻找接下来要学习什么。

斯坦福李飞飞CS231n计算机视觉课程

https://www.bilibili.com/video/BV1nJ411z7fe?spm_id_from=333.999.0.0

吴恩达机器学习系列课程

https://www.bilibili.com/video/BV164411b7dx?spm_id_from=333.999.0.0

正如上面所说的,对于这两门课不必太较真,知道机器学习是怎样进行工作的,以及从学习的过程中知道你要掌握哪些技能。

2.Pytorch入门课程

我认为Pytorch是一种对初学者相当友好的DL框架,作为你第一个熟练使用的框架,是完全值得的。

这也是为什么告诉你 李和吴 的可能在前面不用死扣的原因,当你学习深度学习框架的时候,还会再次接触到之前的 李和吴 课程中的内容,不过这次不再是抽象的数学公式表达,而换成了更易于理解的代码实现,这将有助于你理解,并进一步加深你对DL的认识。

这部分最重要的是动手练习,一定要跟着视频中老师的代码一行一行的手动去实现,自己学习Debug,学会发现问题,并解决问题。有百度,谷歌为什么自己不会去搜索?如果你手懒,不想敲代码,我劝你最好放弃DL,或是在研究生阶段继续当个混子。

我将提供我在学习时的代码,你可以参考我的代码,同时做自己也做了详细的学习笔记。但我建议你要做好自己的笔记,因为自己的笔记才会最熟悉

Pytorch 入门到精通全教程-卷积神经网络-循环神经网络

https://www.bilibili.com/video/BV1CZ4y1w7mE?p=1

我的GitHub仓库

kangpeilun/Pytorch_Learning_Notes: Pytorch_Learning_Notes (github.com)

image-20220316135245809

3.李宏毅的课程最实用-宝可梦王子

李宏毅老师的课程是我认为最实用的,他不会非常深入的给你讲太多理论知识,他能以通俗的话给你解释一种新奇的技术,使你能够很容易的了解某个算法运行的机理。

该部分完全可以和 第二部分 同时进行

李宏毅2021春季课程

https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.php

该链接有配套的课程,以及对应Google Colab的作业BaseLine代码,至于不知道作业怎么做的,可以查找Kaggle上对应该作业别人的实现方法。关键是代码也是用Pytorch实现的

4.Pytorch实战课程

我坚信当你按要求认真完成前三部分的学习,你基本上可以使用Pytorch进行简单的深度学习工作了,但是这还不够,你需要看进阶课程拓展你的编程能力。我同样建议你做好自己的学习笔记,同样我会提供我自己的笔记

Pytorch深度学习实战教学

https://www.bilibili.com/video/BV1Zv4y1o7uG?spm_id_from=333.999.0.0

我的GitHub仓库

kangpeilun/Pytorch-DeepLearning-In-Practice (github.com)

5.时刻关注新的技术 多实战和多复现代码

你可以通过B站UP学习DL最新相关论文以及技术

下面是我关注的几个优秀的UP

霹雳吧啦Wz

image-20220316140745354

啥都会一点的研究生

image-20220316140826606

跟李沐学AI

image-20220316140917477

Bubbliiiing

image-20220316140929408

多进行实战和复现代码强化自己编程能力

实战可以学习上面的UP中的体重的代码,自己利用他们的代码做一些小项目

复现代码 指关注你自己所在的研究领域的论文中提供的代码,自己动手Debug,将他们的代码在你自己的项目中进行实现。

### 使用深度学习构建入侵检测系统 #### 工具和技术的选择 对于希望利用深度学习技术来创建高效的入侵检测系统(IDS),选择合适的开发工具有助于简化过程并加速原型设计。目前主流的深度学习框架如TensorFlow[^1]、PyTorch以及Keras都提供了强大的功能支持,能够满足不同层次的需求。 - **TensorFlow** 是由Google推出的开源软件库,它不仅适合初学者入门,也足以应对复杂的科研挑战; - **PyTorch** 则以其灵活的数据流机制和直观的操作界面受到广泛欢迎,在快速迭代实验场景下表现出色; - **Keras** 作为高层API接口,特别强调用户体验友好性,内置了大量的实用组件可以直接调用。 这些平台均具备良好的文档资料和支持社区,方便使用者获取必要的指导信息。 #### 学习路径规划 深入理解该领域的方法论同样重要。通过研读高质量的相关学术文章可以获得前沿视角;而参与实际编码练习则是掌握具体操作技巧不可或缺的一环。以下是推荐的学习方向: - 阅读关于基于深度学习方法应用于网络安全特别是IDS方面的期刊论文或会议记录,这有助于把握当前研究热点和发展趋势[^2]。 - 加入活跃的技术讨论群组或是专业网站上的专题板块分享见解并向他人请教疑难杂症解决之道。 - 尝试动手完成几个小型案例分析任务,比如尝试重现某些知名成果中的算法逻辑,以此积累实战经验。 #### 资源链接整理 最后,这里列举了一些有价值的参考资料供参考: - 开放访问权限下的数据集合列表可用于验证模型性能指标的真实性与合理性。 - GitHub平台上托管着众多由个人或团体维护更新的优质项目仓库,其中不乏专门面向安全防护措施优化工作的实例可供借鉴学习。 ```python import tensorflow as tf from keras.models import Sequential model = Sequential() # 进一步定义神经网络结构... ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值