【概率与统计】聊聊一些常见的概率分布

笔者:YY同学Serendipity

生命不息,代码不止。好玩的项目尽在GitHub



离散概率分布

离散均匀分布(Discrete Uniform Distribution)
  • 概率质量函数(PMF):
    P ( X = x ) = f ( x ) = { 1 b − a a ≤ X ≤ b 0 o t h e r w i s e P(X=x)=f(x)=\left\{ \begin{aligned} \frac{1}{b-a} & & a \le X \le b\\ 0 & & otherwise \end{aligned} \right. P(X=x)=f(x)= ba10aXbotherwise
  • 期望(Expectation):
    E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b
  • 方差(Variance):
    V a r ( X ) = ( b − a + 1 ) 2 − 1 12 Var(X)=\frac{(b-a+1)^2-1}{12} Var(X)=12(ba+1)21
  • 栗子:随机抽签 N N N 次后中奖( X X X)的概率。
伯努利分布(Bernoulli Distribution)
  • 概率质量函数(PMF):
    P ( X = x ) = f ( x ) = p x ( 1 − p ) 1 − x { p X = 1 1 − p X = 0 P(X=x)=f(x)=p^{x}(1-p)^{1-x}\left\{ \begin{aligned} p & & X=1\\ 1-p & & X=0 \end{aligned} \right. P(X=x)=f(x)=px(1p)1x{p1pX=1X=0
  • 期望(Expectation):
    E ( X ) = ∑ i = 0 1 X i P ( X ) = p E(X)=\sum_{i=0}^{1} X_{i}P(X)=p E(X)=i=01XiP(X)=p
  • 方差(Variance):
    V a r ( X ) = ∑ i = 0 1 ( X i − E ( X ) ) 2 P ( X ) = p ( 1 − p ) Var(X)=\sum_{i=0}^{1} (X_{i}-E(X))^2P(X)=p(1-p) Var(X)=i=01(XiE(X))2P(X)=p(1p)
  • 栗子:发射一枚导弹是否击落敌机( X X X)的概率。伯努利分布又名 01 分布 / 两点分布,是二项式分布的 n = 1 n=1 n=1 的特殊情况。
二项式分布(Binomial Distribution)
  • 概率质量函数(PMF):
    P ( X = x ) = f ( x , n , p ) = C n x p x ( 1 − p ) n − x P(X=x)=f(x,n,p)=C_{n}^{x}p^{x}(1-p)^{n-x} P(X=x)=f(x,n,p)=Cnxpx(1p)nx
  • 期望(Expectation):
    E ( X ) = ∑ i = 1 n X i P ( X ) = n p E(X)=\sum_{i=1}^{n} X_{i}P(X)=np E(X)=i=1nXiP(X)=np
  • 方差(Variance):
    V a r ( X ) = ∑ i = 1 n ( X i − E ( X ) ) 2 P ( X ) = n p ( 1 − p ) Var(X)=\sum_{i=1}^{n} (X_{i}-E(X))^2P(X)=np(1-p) Var(X)=i=1n(XiE(X))2P(X)=np(1p)
  • 栗子:一批产品进行 n n n 次检验后合格的数量( X X X)的概率。
超几何分布(Hypergeometric Distribution)
  • 概率质量函数(PMF):
    P ( X = x ) = f ( x ) = C D x C N − D n − x C N n P(X=x)=f(x)=\frac{C_{D}^{x}C_{N-D}^{n-x}}{C_{N}^{n}} P(X=x)=f(x)=CNnCDxCNDnx
  • 期望(Expectation):
    E ( X ) = n p E(X)=np E(X)=np
  • 方差(Variance):
    V a r ( X ) = n p ( 1 − p ) N − n N − 1 Var(X)=np(1-p)\frac{N-n}{N-1} Var(X)=np(1p)N1Nn
  • 栗子:一批产品有 N N N 个,其中 D D D 个不合格,从 N N N 个中任取 n n n 个,不合格产品数量( X X X)的概率。
几何分布(Geometric Distribution)
  • 概率质量函数(PMF):
    P ( X = x ) = f ( x ) = ( 1 − p ) x p P(X=x)=f(x)=(1-p)^{x}p P(X=x)=f(x)=(1p)xp
  • 期望(Expectation):
    E ( X ) = 1 p E(X)=\frac{1}{p} E(X)=p1
  • 方差(Variance):
    V a r ( X ) = 1 − p p 2 Var(X)=\frac{1-p}{p^2} Var(X)=p21p
  • 栗子:已知射击比赛选手单次射中目标的概率,求他首次射中目标所需的射击次数( X X X)的概率。
负二项分布(Negative Binomial Distribution)
  • 概率质量函数(PMF):
    P ( X = x ) = f ( x , r ) = C x − 1 r − 1 p r − 1 ( 1 − p ) x − r p = C x − 1 r − 1 p r ( 1 − p ) x − r , x ≥ r P(X=x)=f(x,r)=C_{x-1}^{r-1}p^{r-1}(1-p)^{x-r}p=C_{x-1}^{r-1}p^{r}(1-p)^{x-r}, x \ge r P(X=x)=f(x,r)=Cx1r1pr1(1p)xrp=Cx1r1pr(1p)xr,xr
  • 期望(Expectation):
    E ( X ) = r p E(X)=\frac{r}{p} E(X)=pr
  • 方差(Variance):
    V a r ( X ) = r 1 − p p 2 Var(X)=r\frac{1-p}{p^2} Var(X)=rp21p
  • 栗子:某射手连续射击一个目标,射中 r r r 次后停止,若已知单次射中的概率,求射击次数( X X X)的概率。当 r = 1 r=1 r=1 时,即为几何分布。
泊松分布(Poisson Distribution)
  • 概率质量函数(PMF):
    P ( X = x ) = f ( x ) = 1 x ! λ x e − λ , x ∈ N ∗ P(X=x)=f(x)=\frac{1}{x!}\lambda^{x}e^{-\lambda}, x \in N^{*} P(X=x)=f(x)=x!1λxeλ,xN
  • 期望(Expectation):
    E ( X ) = λ E(X)=\lambda E(X)=λ
  • 方差(Variance):
    V a r ( X ) = λ Var(X)=\lambda Var(X)=λ
  • 栗子:在一条马路上,已知 30 分钟内看见汽车驶过的概率,求 10 分钟内看见汽车驶过( X X X)的概率。

连续概率分布

均匀分布(Uniform Distribution)
  • 概率密度函数(PDF):
    p ( x ) = { 1 b − a a ≤ x ≤ b 0 o t h e r w i s e p(x)=\left\{ \begin{aligned} \frac{1}{b-a} & & a \le x \le b \\ 0 & & otherwise \end{aligned} \right. p(x)= ba10axbotherwise
  • 期望(Expectation):
    E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b
  • 方差(Variance):
    V a r ( X ) = ( b − a ) 2 12 Var(X)=\frac{(b-a)^2}{12} Var(X)=12(ba)2
  • 栗子:
指数分布(Exponential Distribution)
  • 概率密度函数(PDF):
    p ( x ) = { λ e − λ x x > 0 0 x ≤ 0 p(x)=\left\{ \begin{aligned} \lambda e^{-\lambda x} & & x \gt 0 \\ 0 & & x \le 0 \end{aligned} \right. p(x)={λeλx0x>0x0
  • 期望(Expectation):
    E ( X ) = 1 λ E(X)=\frac{1}{\lambda} E(X)=λ1
  • 方差(Variance):
    V a r ( X ) = 1 λ 2 Var(X)=\frac{1}{\lambda ^2} Var(X)=λ21
  • 栗子:若电子产品的使用寿命服从指数分布,求该产品在第 X X X 年报废的概率。
威布尔分布(Weibull Distribution)
  • 概率密度函数(PDF):
    p ( x , λ , k ) = { λ k x k − 1 e − λ k x x > 0 0 x ≤ 0 p(x, \lambda, k)=\left\{ \begin{aligned} \lambda^{k}x^{k-1} e^{-\lambda^{k}x} & & x \gt 0 \\ 0 & & x \le 0 \end{aligned} \right. p(x,λ,k)={λkxk1eλkx0x>0x0
  • 期望(Expectation):
    E ( X ) = 1 λ Γ ( 1 + 1 k ) E(X)=\frac{1}{\lambda}\Gamma(1+\frac{1}{k}) E(X)=λ1Γ(1+k1)
  • 方差(Variance):
    V a r ( X ) = 1 λ 2 Γ ( 1 + 2 k ) − ( E ( X ) ) 2 Var(X)=\frac{1}{\lambda ^2}\Gamma(1+\frac{2}{k}) - (E(X))^2 Var(X)=λ21Γ(1+k2)(E(X))2
  • 栗子:轴承的使用寿命服从威布尔分布,指数分布为威布尔分布 k = 1 k=1 k=1 时的特殊情况。
高斯分布(Gaussian Distribution)
  • 概率密度函数(PDF):
    p ( x ) = 1 2 π σ e − 1 2 σ 2 ( x − μ ) 2 p(x)=\frac{1}{\sqrt{2\pi \sigma}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2} p(x)=2πσ 1e2σ21(xμ)2
  • 期望(Expectation):
    E ( X ) = μ E(X)=\mu E(X)=μ
  • 方差(Variance):
    V a r ( X ) = σ 2 Var(X)=\sigma^2 Var(X)=σ2
  • 栗子:高斯分布又称正态分布,世界上很大一部分事件的概率都服从高斯分布,其中 μ = 0 \mu=0 μ=0 σ 2 = 1 \sigma^2=1 σ2=1 的分布又称标准正态分布。
柏拉图分布(Pareto Distribution)
  • 概率密度函数(PDF):
    p ( x ) = { ( a − 1 ) x 0 a − 1 x − a x ≥ x 0 0 x < x 0 p(x)=\left\{ \begin{aligned} (a-1)x_0^{a-1}x^{-a} & & x \ge x_0\\ 0 & & x \lt x_0 \end{aligned} \right. p(x)={(a1)x0a1xa0xx0x<x0
  • 期望(Expectation):
    E ( X ) = ( a − 1 ) x 0 a − 2 , a > 2 E(X)=\frac{(a-1)x_0}{a-2}, a \gt 2 E(X)=a2(a1)x0,a>2
  • 方差(Variance):
    V a r ( X ) = ( a − 1 ) x 0 2 ( a − 2 ) 2 ( a − 3 ) , a > 3 Var(X)=\frac{(a-1)x_0^2}{(a-2)^2(a-3)}, a \gt 3 Var(X)=(a2)2(a3)(a1)x02,a>3
  • 栗子:家庭年收入服从柏拉图分布,其中 x 0 > 0 x_0>0 x0>0 a > 1 a>1 a>1 的分布又称标准正态分布。
Beta 分布(Beta Distribution)
  • 概率密度函数(PDF):
    p ( x ) = { 1 B ( α , β ) x α − 1 ( 1 − x ) β − 1 0 ≤ x ≤ 1 0 o t h e r w i s e p(x)=\left\{ \begin{aligned} \frac{1}{B(\alpha, \beta)}x^{\alpha-1}(1-x)^{\beta-1} & & 0 \le x \le 1\\ 0 & & otherwise \end{aligned} \right. p(x)= B(α,β)1xα1(1x)β100x1otherwise
    B ( α , β ) = ∫ 0 1 x α − 1 ( 1 − x ) β − 1 d x B(\alpha, \beta)=\int_0^1x^{\alpha-1}(1-x)^{\beta-1}dx B(α,β)=01xα1(1x)β1dx
  • 期望(Expectation):
    E ( X ) = α α + β E(X)=\frac{\alpha}{\alpha+\beta} E(X)=α+βα
  • 方差(Variance):
    V a r ( X ) = α β ( α + β ) 2 ( α + β + 1 ) Var(X)=\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} Var(X)=(α+β)2(α+β+1)αβ
  • 栗子:与二项式分布、 Gamma 分布有密切联系。
Gamma 分布(Gamma Distribution)
  • 概率密度函数(PDF):
    p ( x ) = { β α Γ ( α ) x α − 1 e − β x x > 0 0 x ≤ 0 p(x)=\left\{ \begin{aligned} \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} & & x \gt 0\\ 0 & & x \le 0 \end{aligned} \right. p(x)= Γ(α)βαxα1eβx0x>0x0
    Γ ( α ) = ∫ 0 + inf ⁡ u α − 1 e − u d u \Gamma(\alpha)=\int_0^{+\inf}u^{\alpha-1}e^{-u}du Γ(α)=0+infuα1eudu
  • 期望(Expectation):
    E ( X ) = α β E(X)=\frac{\alpha}{\beta} E(X)=βα
  • 方差(Variance):
    V a r ( X ) = α β 2 Var(X)=\frac{\alpha}{\beta^2} Var(X)=β2α
  • 栗子:常见于水文研究,与指数分布、高斯分布有密切联系。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值