在数字化转型时代,农业不再仅仅与土壤、水和阳光有关。随着生成式人工智能的出现,农业正变得更加智能、高效,并且越来越以数据为主导。从以前所未有的准确度预测作物产量到开发抗病植物品种,生成式人工智能使农民能够做出精确的决策,从而优化产量和资源利用。本文探讨了生成式人工智能如何改变农业,并探讨了其对传统农业实践的影响及其未来的潜力。
了解生成式人工智能
生成式人工智能是一种人工智能,旨在根据从现有数据中学习到的模式和示例生成新内容(无论是文本、图像还是预测模型)。与专注于识别模式或做出预测的传统人工智能不同,生成式人工智能创建的原始输出与训练数据非常相似。这使其成为增强决策能力和推动创新的强大工具。生成式人工智能的一个关键特性是便于构建人工智能应用程序,而无需太多标记的训练数据。此功能在农业等领域尤其有用,因为在这些领域,获取标记的训练数据可能具有挑战性且成本高昂。
生成式 AI 模型的开发涉及两个主要步骤:预训练和微调。在预训练阶段,模型会接受大量数据的训练,以学习一般模式。此过程会建立一个具有广泛而多才多艺的知识的“基础”模型。在第二阶段,通过在与预期应用(例如检测农作物疾病)相关的较小、更集中的数据集上进行训练,对预训练模型进行微调,以完成特定任务。生成式 AI 的这些有针对性的用途被称为下游应用。这种方法允许模型有效地执行专门的任务,同时利用在预训练期间获得的广泛理解。
生成式人工智能如何改变农业
在本节中,我们探讨生成式人工智能在农业领域的各种下游应用。
- **