第二篇大模型开发企业AI智能小助手应用高级篇
自从2020年大模型被人熟知,到现在的人尽皆知的,基本上每个人都或多或少的使用过大模型的能力。由于知识点很多,我准备分4篇文章,从系统环境配置>知识库搭建>提示词优化>系统调优>对接web系统开发一个完整的大模型应用项目!
-
第一篇大模型应用开发系统环境配置
-
第二篇大模型应用知识库搭建上下篇
-
第三篇大模型应用模型及提示词优化
-
第四篇大模型应用与halo系统对接
原创不易,请关注公众号:【爬虫与大模型开发】,大模型的应用开发之路,整理了大模型在现在的企业级应用的实操及大家需要注意的一些RAG开发的知识点!持续输出爬虫与大模型的相关文章。
AI智能助手开发:高级篇
工作流开发复杂需求的AI智能助手
上篇中我们使用对话的形式开发了一个企业员工手册的智能小助手,可以帮助企业内的员工,对企业的规章制度有更多的认识和了解,对于一些不明白的问题,可以随时问小助手。
实现的业务需求
我们来回顾下我们能的设计思路:希望通过开发大模型应用助手,将我们的大量的文档需求转化成对话式的聊天问答方式,将复杂的问题以简洁明了的方式传达给用户。
现需要将规章制度文档,产品操作手册这两个文档结合成一个AI小助手,给技术支持同事以及客户使用,辅助他们的日常工作需要及产品使用操作查询,我们上一篇时使用的一个知识库,但是现在我们有两个知识库,就不能再使用上一篇中的开发方法。
那么有什么可以将多个知识库串联起来?还能让用户问的问题准确的分配到对用的知识库呢?如果知识库中没有,我们还需要给客户提供人工的服务。
而且我们不能控制用户的问题需求是的时候,最好还能给用户提示;例如请用户继续补充需求帮助大模型判断用户的需求意图,并回答问题!
业务实现原理
我们可以把业务分解后形成工作流的方式,使用maxkb的高级编排功能,创建符合自己业务逻辑的场景,包括但不限于使用判断器、问题优化、函数库、内置标签等功能。
使用RAG检索增强大模型输出的方式,可以有效的将本地知识库的数据提供给用户,不过我们需要对大模型的回答进行必要约束,防止他一本正经的”胡说八道“。
工作流高级编排实现
创建一个应用企业AI智能客服
选择高级编排,才能使用工作流开发
按照我们的业务流程:
-
从“用户输入提问”开始。
-
接着“大模型识别用户的意图”。
-
然后进行“意图分类判断”。
-
如果“企业规章制度、产品使用操作、人工服务”,则进行“知识库检索”。
-
如果“打招呼或者意图无法识别”,则直接“完成”。
-
如果需要检索知识库,则在检索后“大模型生成回答”,然后“完成”。
-
如果检索知识库后没有找到信息,则给出固定的回复。
创建一个AI意图分类大模型节点+意图分类判断器
意图分类是打招呼的直接输出固定的内容
意图分类是企业规章制度的,检索知识库+条件判断+大模型输出
完整的工作流编辑
其中还有大量的大模型的提示词的编写及优化,本篇就不再详细的介绍了,需要的同学可以加公众号:【爬虫与大模型开发】联系我,可以将相关的资料发给你。
实现的成果预览
用户打招呼:你好
第1个用户提问:工作的上下班时间?
第2个用户提问:节假日放假吗?
第3个用户提问:后台批量上传cas产品?
人工服务:回复
直接回答知识库指定内容【由于CSDN内容审核截图无法通过审核显示!】
无法识别的意图指定回答
知识库中没有的数据直接回答
小结
企业级大模型知识库开发涉及的比较的知识点多,公众号的篇幅有限,因此我决定分4个篇幅来为大家奉上!以上是大模型应用开发的第二篇高级篇!
-
第一篇大模型应用开发系统环境配置
-
第二篇大模型应用知识库搭建上下篇
-
第三篇大模型应用模型及提示词优化
-
第四篇大模型应用与halo系统对接
完结
原创不易,点个关注!
不会错过后面的优质文章!
觉着写的不错的可以帮忙点点赞
关注公众号:爬虫与大模型开发
需要以上源代码的下面留言:“想要代码”
活跃在一线的爬虫工程师分享自己学习之路
我创建了爬虫与大模型开发的星球群
适合爱好爬虫及从事爬虫的同学
代码相关内容我放到了星球