测试信号分析-估计理论的基本原理

估计理论的基本原理

随机信号序的统计量估计

随机信号序列 x(n),有限长度 均值、相关函数、功率谱密度函数的估计式为
m ^ = 1 N ∑ x ( n ) \hat m = \frac{1}{N}\sum x(n) m^=N1x(n) R ^ x x = 1 N ∑ x ( n ) x ( n + m ) \hat R_{xx}= \frac{1}{N}\sum x(n)x(n+m) R^xx=N1x(n)x(n+m) P ^ x x ( e j ω ) = ∑ m = − ( N − 1 ) N − 1 R x x e − j ω n \hat P_{xx}(e^{j\omega})= \sum^{N-1}_{m=-(N-1)} R_{xx}e^{-j\omega n} P^xx(ejω)=m=(N1)N1Rxxejωn

● 无偏估计: 估计均值准确
● 一致估计: 随着采样点增加,估计的均方误差趋于0(未必无偏,如果有偏那么渐进无偏)
● 有效估计: 估计方差小

估计均值 m ^ \hat m m^是无偏的
估计方差 σ ^ = 1 N ∑ [ x ( n ) − m x ] 2 \hat \sigma = \frac{1}{N}\sum[x(n)-m_x]^2 σ^=N1[x(n)mx]2无偏一致。
估计方差 σ ^ = 1 N ∑ [ x ( n ) − m ^ x ] 2 \hat\sigma = \frac{1}{N}\sum[x(n)-\hat m_x]^2 σ^=N1[x(n)m^x]2有偏一致,渐进无偏。
估计方差 σ ^ = 1 N − 1 ∑ [ x ( n ) − m ^ x ] 2 \hat\sigma = \frac{1}{N-1}\sum[x(n)-\hat m_x]^2 σ^=N11[x(n)m^x]2无偏一致。

相关函数估计的计算式

R ^ x x = 1 N − ∣ m ∣ ∑ n = 0 N − ∣ m ∣ − 1 x ( n ) x ( n + m ) \hat R_{xx}= \frac{1}{N-|m|}\sum_{n=0}^{N-|m|-1} x(n)x(n+m) R^xx=Nm1n=0Nm1x(n)x(n+m)

按照有限长的数据集进行估计。估计质量如何?

  • 均值:是无偏估计
  • 方差:估计值比较分散,综合质量较差(方差估计比较复杂)

实际使用的计算式
R ^ x x = 1 N ∑ n = 0 N − ∣ m ∣ − 1 x ( n ) x ( n + m ) \hat R_{xx}= \frac{1}{N}\sum_{n=0}^{N-|m|-1} x(n)x(n+m) R^xx=N1n=0Nm1x(n)x(n+m)

  • 显然是有偏的
  • 渐进无偏
  • 方差更小了(避免当N较小的时候碰到小数的除法造成大方差)

结论:实际计算中m宜小,N宜大。但 N 大,N2/2次乘法,计算量也大。

解决直接计算带来的问题,用FFT估计相关函数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fCyP0aio-1604984727185)(fig/4.png)]

  1. 把x(n)往右移动m个点,然后对应相乘相加,会得到 N R x y ( m ) NR_{xy}(m) NRxy(m)的采样点。

具体实现:
做一个变量代换x’(t)=x(-t)

因为卷积的自变量移动方向和相关函数的相反,所以需要做这个代换,从而有

R ^ x y = 1 N ∑ n = 0 N − 1 x ( n ) y ( n + m ) = ∑ n = 0 N − 1 x ( n − m ) y ( n ) \hat R_{xy}= \frac{1}{N}\sum_{n=0}^{N-1} x(n)y(n+m) = \sum_{n=0}^{N-1} x(n-m)y(n) R^xy=N1n=0N1x(n)y(n+m)=n=0N1x(nm)y(n) = ∑ n = 0 N − 1 x ( − ( m − n ) ) y ( n ) = 1 N x ′ ( m ) ∗ y ( m ) = \sum_{n=0}^{N-1} x(-(m-n))y(n) =\frac{1}{N} x'(m)*y(m) =n=0N1x((mn))y(n)=N1x(m)y(m)

  1. 时域中的卷积可转换成频域中的乘积,就可以使用FFT在频域中相乘

具体实现:
两个长度为 N 的序列作线性卷积后长度 2N-1(相关函数会有2N-1个点),而做FFT后有N-1个点。
需对 x(n) 补零到 2N点,再做FFT。

step1: 补零做FFT得X
step2: 做复共轭 X ∗ X^* X得到 1 N ∣ X 2 ∣ \frac{1}{N}|X^2| N1X2
step3: 做IFFT得到 R 0 R_0 R0
step4: 调整估计的错位,大概是N个点

例子

1 不听
2 不听
3 运动中的标志点检测

有意思 想做

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YZNnfTEP-1604984727186)(fig/5.png)]

复习题是C。

功率谱的经典估计法

窗函数和谱分析

1.基于采样数据的 DFT,其周期是由采样时窗所决定的,对某个时窗 T 里的数据作变换,意味 着这个时窗就是信号的周期,而不管信号的实 际周期是多少。

2.一旦选定时窗 (T = NTs),谱的最小间隔也就确 定了 (Δf = 1/T) 。当用 IDFT 来重建时域信号时, 将是具有以 T 为间隔的周期信号。

3.基于时窗的不同选择 谱泄漏和栅栏效应的问题。

【泄露】:窗函数瓣不是delta而是sinc
【栅栏】:离散采样,就像透过栅栏来观测。因此要么展宽时窗,要么改善窗函数。(不等加权窗)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pvp5WSHi-1604984727187)(fig/6.png)]

功率谱估计概述

维纳辛钦公式:自相关和自功率谱密度互为傅里叶
R x x − > F − > P x x ( j Ω ) R_{xx}->F->P_{xx}(j\Omega) Rxx>F>Pxx(jΩ) R x y − > F − > P x y ( j Ω ) R_{xy}->F->P_{xy}(j\Omega) Rxy>F>Pxy(jΩ)

问题:如何用这单一样本的有限长数据去估 计原随机信号真实的功率谱?

  1. 周期图法(PER法)

直接建立在功率谱的定义式上,FFT很快,当FFT被提出之后周期图法成为主流。

  1. 取 N 点数据的 DTFT (DFT)。
  2. 求模之平方并除以 N。

周期图法的计算式隐含着假设把随机信号 x(n)看成是遍历(各态历经的),用一个样本 x(n) 的 N 点的谱来替代无限样本谱集合。

  1. 维纳辛钦公式

由维纳-辛钦公式,经自相关函数间接获得。(间接法) (Blackman-Tukey法)(下标是作者名字的缩写)

一样要补零。

  1. 对X(n)补零,计算自相关函数(用常用计算方法)
    • 只要存在卷积操作或者相关计算,补零之后才能充分利用每一个点的数据
  2. 按2N-1点对R做DFT,就可以得到自功率谱。

直接法—P (k)共N点
间接法—共2N点

2N点的谱,把所能估计出的自相关函数都使用上了,而估计自相关函数时,把N点数据也全都使用上了。

  1. 质量评价

【周期图法】
估计的均值:不是谱密度的真值,而是真值与三角窗函数的卷积。卷积结果造成真谱的尖峰处产生泄漏,平抑了峰值。(有偏、渐进无偏)
估计的方差:方差一定还会有,且极限是 σ 4 \sigma^4 σ4,所以不是一致估计。这样的估计是不好的。

经典功率CPU估计的改进

周期图法是有偏不一致的。

  1. 用合适的窗函数对谱估计作平滑
    ----- 加窗平滑(Blackman-Tukey法)
  2. 对同一过程作多次估计
    ----- 平均周期图法 (Bartlett法)
  3. 把1)和2)结合起来
    ----- 韦尔奇法 (Welch法)

1. 加窗平滑法(BT法)

原理:先做自相关的估计,然后选择合适的窗函数进行截取,最后再做DFT

M≤N-1,窗函数v(m)在[-M,M]区间上取值, 其余为0。

数据从0~N-1
自相关函数则取[-M,M],即只用到了部分数据而不是全部数据点 (可能尾部的数据点会影响估计质量)

假定:P的变化是慢的,在V的主瓣内是一个常数,V(窗函数)的积分是1

  • 估计的均值:能够满足渐进无偏的。
  • 估计的方差:加了一个窗之后,方差会渐进趋于0(渐进无偏,一致估计)

2. 平均周期图法 (Bartlett法)

K个独立同分布的随机变量的均值之方差, 等于单个变量方差的 1/K。长数据N分成K段,每段M=N/K,每段用周期图法(定义法)求谱,最后做平均。

  • 平均:每段的均值是一样的,依然是渐进无偏估计。但是每一段的N更小了,所以偏差会变大。分辨率降低了。

  • 方差:如果K够大,那么是一致估计,但是K不可能取到无穷大。且相邻的数据段有较强的相关性,不具完全独立 性,实际方差(包含了协方差)大于计算结果。

具体的分辨率是多少呢:
W ( ω ) 的 主 瓣 半 宽 度 是 2 π N k W(\omega)的主瓣半宽度是\frac{2\pi}{N}k W(ω)N2πk
严格区分两个频谱的时候,要距离一整个主瓣

3. 平均周期图法

  1. 把N点数据分成K份,可以重叠,每段数据需要补零至2的整数幂
  2. 每段数据都进行加窗
  3. 根据功率谱定义求各段功率谱,然后求平均
  4. 为了进行渐进无偏,需要除以窗函数的能量 U = ∑ w 2 M U=\frac{\sum w^2}{M} U=Mw2

质量评判:

  • 引进这个U之后,对自功率谱的估计是渐进无偏的。
  • 尽管这里使用的是离散求和,但是原本的积分中,由于e指数函数的正交性,最终结果和离散求和只差一个系数U
  • 交叉使用的时候,协方差增大。

工程应用:

  1. 数据量较小的时候估计相关函数,只要使用一般估计式子就行。
  2. 数据量大的时候用FFT来估计相关函数
  3. 计算功率谱的时候一般不用傅里叶,而是直接计算,现在一般用韦尔奇法。

【如何评判一个估计的好坏】

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值