GeForce RTX 3090深度学习测评

GeForce RTX 3090深度学习测评

环境踩坑

  • 八卡GeForce RTX 3090+Pytorch1.7+cuda11.1+对应cudnn
  • pytorch 1.7以下版本无法对显卡写入数据
  • tensorflow未尝试 据别的文章说只有nightly支持
  • 驱动如下:
NVIDIA-SMI 455.23.05    
Driver Version: 455.23.05    
CUDA Version: 11.1    

环境是conda直接安装
在这里插入图片描述

测试速度

  • 用一台8卡2080Ti的服务器作对比,除了环境以外代码和数据集相同。
  • 用脉冲残差神经网络,spike-ResNet18做对比(这个网络非常吃显存,可以把8卡2080Ti跑满)
  • 采用分布式学习

2080Ti 19分48s跑了849个batch,每个batch是20个样本(8*20=160)
在这里插入图片描述
3090 19分23s跑了799个batch,每个batch是20个样本(8*20=160)

在这里插入图片描述

【待更新,等跑几个epoch回来】

结论

  • 3090的速度受到环境限制可能未必能超过之前的中高端显卡
  • 一个潜在的可能性是我使用的实验环境上,两台服务器的架构不太一样,2080Ti服务器多卡通讯效率更高一些
  • 师兄的实验:单卡3090甚至也比2080Ti更慢一些
  • 进一步怀疑是不是因为编程框架太新优化不够好,CUDA的测例网上已经有很多,都认为3090快得多
  • 更进一步怀疑是不是散热的问题,tf的实验还有待更新
### RTX 4070S 对于 DeepSeek 的支持与性能评估 #### 显卡特性概述 NVIDIA GeForce RTX 4070S 是一款基于 Ada Lovelace 架构的高性能图形处理单元 (GPU),具备强大的计算能力先进的硬件加速功能。这款 GPU 配备了第三代 Tensor Cores 第二代 RT Cores,这使得它在执行复杂的机器学习任务时表现出色。 #### DeepSeek 推理框架的支持情况 DeepSeek 是一种用于自然语言理解生成的大规模预训练模型,在本地环境中运行该模型通常需要高效的硬件资源来保障速度准确性。由于 RTX 4070S 提供了对 PyTorch 等主流深度学习库的良好兼容性以及通过 vLLM、LmDeploy 进行推理加速的能力[^3],因此可以有效提升 DeepSeek 模型的加载时间预测效率。 #### 性能评测要点 当考虑使用 RTX 4070S 来驱动 DeepSeek 应用程序时,有几个方面值得注意: - **内存容量**:RTX 4070S 拥有较大容量的 GDDR6X 显存,这对于存储大型神经网络参数至关重要。 - **张量核心效能**:得益于改进后的 Tensor Core 设计,可以在 FP16/FP8 数据类型下实现更高的吞吐量,从而加快矩阵运算的速度并减少延迟。 - **光线追踪与 DLSS 技术的应用局限性**:尽管 RTX 4070S 继承了前几代产品的优势——如优秀的光线追踪渲染质量 DLSS 功能——但对于专注于文本处理而非图像呈现的任务来说,这些特性的价值相对有限[^1]。 为了获得最佳实践指导,建议开发者们关注官方文档技术论坛中的最新案例研究,以便更好地理解如何针对特定应用场景优化配置设置。 ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_name = 'your_deepseek_model' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to(device) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device) outputs = model.generate(inputs, max_length=50, num_return_sequences=1) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值