GeForce RTX 3090深度学习测评

深度学习 专栏收录该内容
3 篇文章 0 订阅

GeForce RTX 3090深度学习测评

环境踩坑

  • 八卡GeForce RTX 3090+Pytorch1.7+cuda11.1+对应cudnn
  • pytorch 1.7以下版本无法对显卡写入数据
  • tensorflow未尝试 据别的文章说只有nightly支持
  • 驱动如下:
NVIDIA-SMI 455.23.05    
Driver Version: 455.23.05    
CUDA Version: 11.1    

环境是conda直接安装
在这里插入图片描述

测试速度

  • 用一台8卡2080Ti的服务器作对比,除了环境以外代码和数据集相同。
  • 用脉冲残差神经网络,spike-ResNet18做对比(这个网络非常吃显存,可以把8卡2080Ti跑满)
  • 采用分布式学习

2080Ti 19分48s跑了849个batch,每个batch是20个样本(8*20=160)
在这里插入图片描述
3090 19分23s跑了799个batch,每个batch是20个样本(8*20=160)

在这里插入图片描述

【待更新,等跑几个epoch回来】

结论

  • 3090的速度受到环境限制可能未必能超过之前的中高端显卡
  • 一个潜在的可能性是我使用的实验环境上,两台服务器的架构不太一样,2080Ti服务器多卡通讯效率更高一些
  • 师兄的实验:单卡3090甚至也比2080Ti更慢一些
  • 进一步怀疑是不是因为编程框架太新优化不够好,CUDA的测例网上已经有很多,都认为3090快得多
  • 更进一步怀疑是不是散热的问题,tf的实验还有待更新
  • 1
    点赞
  • 3
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值