承接上一篇博文:A 2020 Human Pose Estimation Review (Part1:2D Single Person)
目录
1 Human Pose Estimation
2 2D Single-Person Pose Estimation
3 2D Top-Down Multi-Person Pose Estimation
3.1 Top-Down
3.2 Mask RCNN
3.3 Cascaded Pyramid Network for Multi-Person Pose Estimation
3.4 RMPE: Regional Multi-Person Pose Estimation
3.5 A coarse-fine network for keypoint localization
3.6 Rethinking on Multi-Stage Networks for Human Pose Estimation
3.7 Simple Baselines for Human Pose Estimation and Tracking
3.8 Spatial Shortcut Network for Human Pose Estimation
3.9 2D Top-Down Multi-Person Pose Estimation小结
4 2D Bottom-Up Multi-Person Pose Estimation
5 3D Human Pose Estimation from Image
6 3D Human Pose Estimation from Video
3 2D Top-Down Multi-Person Pose Estimation
3.1 Top-Down
Top-Down的思路就是,先检测出图片中每个人体的边界框,然后将每个人体裁剪出来,进行单人的人体姿态估计。这种方法与单人人体姿态估计有着高度的联系,但也存在一些不同,一是图片中会有各种大小的人,这使得裁剪出的人体图象分辨率不一;另一方面,裁剪出的图像中,可能还包含其他人体的一些部分,这使得准确定位关节点更加困难;最后就是需要先使用bbox的检测器,检测器性能对于最终的pose预测性能也会有影响。
3.2 Mask RCNN, ICCV2017
Mask RCNN的结构我可能一辈子也不会忘记,作为自己