模分多址技术:Model division multiple access for semantic communications

本文介绍了多址技术从1G到6G的发展历程,重点探讨了模分多址,一种基于语义域的多址技术,通过区分共享和个性化信息进行信号复用,以提高频谱效率。RSMA和模分多址是6G的重要候选技术,特别是后者在模型支持下提取语义信息的过程.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


论文简介

  • 作者
    Ping Zhang (张平)
    Xiaodong Xu (许晓东)
    Chen Dong (董辰)
    Kai Niu (牛凯)

  • 发表期刊or会议
    《Frontiers of Information Technology & Electronic Engineering》

  • 发表时间
    2023.6


知识积累

多址技术主要致力于将正交的无线资源分配到不同的物理资源,以避免多用户干扰。

  • 1G:时分多址(TDMA)

  • 2G:频分多址(FDMA)

  • 3G:码分多址(CDMA)

  • 4G:正交频分多址(OFDMA),对时域和频域进行调度;多输入多输出(MIMO)技术的发展创造了空间域,从而催生了空分多址(SDMA)

  • 5G:为了进一步提高频谱效率(SE),多址技术通过在功率域分配资源,向非正交多址(NOMA)方向发展。每个用户的信息被分配不同的功率然后叠加传输。在接收端,采用干扰消除技术来分离不同用户的信号。

  • 6G:候选多址技术,速率分割多址接入 (RSMA)。RSMA的主要思想是在发射端将发送消息拆分为两个部分,分别称为“专有部分”和“公有部分”,然后“公有部分”合并为一个整体,与“专有部分”在相同的时频资源内传输;在接收端,每个用户除了解码自己的由两部分组成的消息外,还解码部分干扰


模分多址

在这里插入图片描述

  • 定义
    模分多址技术是一种基于语义域的多址技术,定义了名为模型信息空间的高维空间,皆在从模型信息空间中挖掘语义信息的共享信息个性化信息,然后将共享信息的信号叠加复用,达到多址的效果,减少传输带宽

  • 个人理解
    通读全文,模分多址与模型没有太大关系,更多侧重在把语义信息分为“共享信息”和“个性化信息”,当然提取语义信息是要在模型的前提之下。这里的模分多址不是个人理解的给不同用户分配不同模型 😩

  • 提取共享信息的方法
    提取共享信息的方法比较简单,比较两个语义向量每个维度 [维度该怎么理解] 的方差,并设置百分比阈值 [阈值又该怎么确定]


### GeoKnowledgeNet 地理空间知识图谱简介 GeoKnowledgeNet 是一种专门针对地理空间数据设计的知识图谱结构,旨在提升语义型对于复杂环境的理解能力[^3]。通过融合多源异构的地理信息,该网络能够有效增强对特定区域内的地物特征识别精度。 #### 构建原理 GeoKnowledgeNet 利用卷积神经网络 (CNN) 和概率图形依赖解析技术来构建其核心架构[^1]。具体而言,在处理遥感影像或其他形式的地图数据时,系统会自动提取并关联各类地理实体之间的关系式,形成一个富含上下文信息的知识库。这种基于深度学习的方法不仅提高了型的学习效率,还增强了预测结果的空间一致性。 #### 应用场景 在实际应用方面,GeoKnowledgeNet 可以为多种任务提供支持: - **高辨率卫星图像解译**:通过对大规遥感数据集进行训练,实现精准的土地覆盖类; - **城市规划与管理决策辅助**:帮助政府机构更好地理解和评估城市发展状况; - **灾害应急响应**:快速准确地标记受灾地区的关键设施位置,指导救援行动部署; ```python import torch from torchvision import models # 加载预训练型作为基础框架 model = models.segmentation.deeplabv3_resnet101(pretrained=True) def apply_geoknowledgenet(image_tensor): """ 使用 GeoKnowledgeNet 对输入图片张量执行语义割操作 参数: image_tensor (torch.Tensor): 输入的 RGB 图像张量 返回: segmented_image (torch.Tensor): 经过语义割后的输出张量 """ # 假设此处已经实现了具体的 GeoKnowledgeNet 处理逻辑... return model(image_tensor)['out'] ``` #### 数据准备与标注 为了使 GeoKnowledgeNet 更加鲁棒可靠,通常需要大量高质量的人工标注样本参与监督式学习过程。这些标记好的数据集应当尽可能全面地涵盖目标区域内可能出现的各种典型地貌类型及其组合形态,从而确保最终得到的型具有良好的泛化性能。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值