2018 CVPR之语义分割:CCNet: Criss-Cross Attention for Semantic Segmentation

本文介绍的CCNet是一种语义分割方法,它通过交叉关注模块有效地捕捉全局上下文信息,解决了传统FCN方法的局限。相比PSPNet,CCNet在Cityscapes、ADE20K和COCO等数据集上表现出优越性能。模型结构包含ResNet-101作为backbone,结合两个递归的criss-cross attention modules,实现了高效且全面的contextual information获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CCNet: Criss-Cross Attention for Semantic Segmentation
简述:
目前,语义分割的主流方法多为以FCN为基础的网络,它们天生局限于局部接受域和短期上下文信息。由于语境信息的不足,这些限制对基于模糊语言的方法产生了很大的负面影响。随后的带有金字塔池模块的PSPNet来捕获上下文信息同样没有达到预期的效果。本文提出CCNet,利用当前的两个交叉关注模块,实现领先性能的分段基准,包括Cityscapes, ADE20K和MSCOCO。

问题or相关工作:
CCNet有明显的两个优势:1是计算量小,仅(H+W-1)元素
2递归方式用CCNet,对一个像素捕捉到全局的contextual information
模型:
CCNet框架解读:照片输入进网络后,先选用ResNet-101作为backbone,backbone最后两个stage的stride改为1,同时用洞卷积扩大感受野,得到的特征图X是原图的1/8;随后经过1×1卷积降维,得到H;H经过一个criss-cross attention module得到H’,此时H’中的每个位置捕捉到和u在同一行或同一列的context information;H`经过一个相同结构,相同参数的CC module,得到H’’,在H’’中的每个位置,捕捉的是全局性的context information;最后将X与H’’级联,经过分割层得出结果。
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值