混淆矩阵、准确率、查准率、查全率、DSC、IoU、敏感度的计算

1.背景介绍

在训练的模型的时候,需要评价模型的好坏,就涉及到混淆矩阵、准确率、查准率、查全率、DSC、IoU、敏感度的计算。

2、混淆矩阵的概念

所谓的混淆矩阵如下表所示:

TP:真正类,真的正例被预测为正例

FN:假负类,样本为正例,被预测为负类

FP:假正类 ,原本实际为负,但是被预测为正例

TN:真负类,真的负样本被预测为负类。

从混淆矩阵当中,可以得到更高级的分类指标:Accuracy(准确率),Precision(查准率),Recall(查全率),Specificity(特异性),Sensitivity(灵敏度)。

3. 常用的分类指标

3.1 Accuracy(准确率)

不管是哪个类别,只要预测正确,其数量都放在分子上,而分母是全部数据量。常用于表示模型的精度,当数据类别不平衡时,不能用于模型的评价。

Accuracy=\frac{TP+TN}{TP+FN+FN+TN}

3.2 Precision(查准率)

即所有预测为正的样本中,预测正确的样本的所占的比重。

Precision = \frac{TP}{TP+FP}

3.3  Recall(查全率)

真实的为正的样本,被正确检测出来的比重。

Recall=\frac{TP}{TP+FN}

3.4 Specificity(特异性)

特异性指标,也称 负正类率(False Positive Rate, FPR),计算的是模型错识别为正类的负类样本占所有负类样本的比例,一般越低越好。

FPR = \frac{FP}{TN+FP}

3.5 DSC(Dice coefficient)

Dice系数,是一种相似性度量,度量二进制图像分割的准确性。

如图所示红色的框的区域时Groudtruth,而蓝色的框为预测值Prediction。

DSC=\frac{2\left | G\sqcap P \right |}{\left | p \right |+\left | G \right |}

3.6 IoU(交并比)

IoU=\frac{p\sqcap G}{p\bigsqcup G}

3.7 Sensitivity(灵敏度)

反应的时预测正确的区域在Groundtruth中所占的比重。

SEN=\frac{\left | p \left | \sqcap \right |g\right | }{\left | G \right | }

4. 计算程序

为了更好的理解混淆矩阵,画了以下示意图,展示TP、FP、FN、TN的位置,在一个100×100的区域中,有一个50×50的红色预测区域和黑色框的groundtruth区域。接下来计算各项评价指标。

​​​​​​​

ConfusionMatrix 这个类可以直接计算出混淆矩阵

4.1 首先绘制出上图所示的图像,并填充颜色


import torch
import torch.nn as nn
from torchmetrics import ConfusionMatrix
import cv2 as cv
import numpy as np


# pre = torch.tensor([[1,0],[1,1]])
# gt = torch.tensor([[0,0],[1,1]])
# 定义一个函数,填充绘制的轮廓
def fill_img(img):
    contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
    area = []
    for k in range(len(contours)):
        area.append(cv.contourArea(contours[k]))
    # 轮廓索引
    max_idx = np.argsort(np.array(area))

    # 按轮廓索引填充颜色
    for idx in max_idx:
        # 填充轮廓
        img = cv.drawContours(img, contours, idx, 255, cv.FILLED)
    return img


# 创建两幅图像
image1 = np.zeros((100, 100, 1), dtype=np.uint8)
cv.rectangle(image1, (0,0), (49,49), 255, 1)

image2 = np.zeros((100, 100, 1), dtype=np.uint8)
cv.rectangle(image2, (40,40), (89,89), 255, 1)


#得到两幅图像,
gt = fill_img(image1)
pre = fill_img(image2)

gt = torch.from_numpy(gt)
pre = torch.from_numpy(pre)


gt =gt/255
pre =pre/255

4.2 计算各类评价指标

#计算各类评价指标
def calulate_metrics(gt,pre):
    # 初始化混淆矩阵
    conf_matrix = ConfusionMatrix(task='binary', threshold=0.5, num_classes=2)
    # 更新混淆矩阵,对于二分类任务
    conf_matrix.update(gt, pre)
    '''
    这里要注意各个元素代表的含义,获得混淆矩阵:
    m00=True negatives; 
    m01= False positives;
    m10=False negatives;
    m11=True positives
    '''
    matrix = conf_matrix.compute().numpy()
    # print("Confusion Matrix:")
    # print(matrix)
    #准确率ACC=(TP+TN)/(TP+TN+FP+FN)
    ACC=(matrix[0,0]+matrix[1,1])/np.sum(matrix)
    print("ACC:{}".format(ACC))
    #精确率PPV=(TP)/(TP+FP)
    PPV=matrix[1,1]/(matrix[0,1]+matrix[1,1])
    print("PPV:{}".format(PPV))
    #灵敏度/召回率:Recall= TP/(TP+FN)
    Recall= matrix[1,1]/(matrix[1,1]+matrix[1,0])
    print("Recall:{}".format(Recall))
    #特异度TNR=TN/(TN+FP)
    TNR = matrix[0,0]/(matrix[0,0]+matrix[0,1])
    print("TNR:{}".format(TNR))
    return ACC, PPV, Recall, TNR



if __name__ == '__main__':
    ACC, PPV, Recall, TNR = calulate_metrics(gt,pre)

4.3 运行结果

可见运行结果是正确的。

参考文献:

混淆矩阵的概念-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值