【DL经典回顾】距离度量大汇总(6-马氏距离(Mahalanobis Distance))
文章目录
在深入探讨深度学习(DL)时,我们常常会发现,有些基础概念虽小,却影响深远。距离度量就是这样一个看似简单,实则至关重要的概念。它是机器学习和深度学习中不可或缺的一环,影响着模型的性能和应用的广泛性。在本专栏中,我们将进行一次深度的探索,回顾距离度量的各种方法,并理解它们的重要性和应用。
一、马氏距离(Mahalanobis Distance)
1. 定义和公式
马氏距离(Mahalanobis Distance)是由印度统计学家普拉萨德·查拉·马哈拉诺比斯(Prasanta Chandra Mahalanobis)提出的,用于度量一个点到一个分布或数据集中心的距离。它考虑了数据特征之间的相关性,并通过这些特征的协方差来调整距离的度量,因此是一种有效的多维距离度量方法。给定一个点 x