deepseek 数据训练

这篇文章主要介绍下什么是大模型的数据训练。以及数据训练的大体思路。

一、训练数据的组成

大模型训练数据通常分为三部分:

1.预训练数据(占比90%以上)

来源:互联网公开文本(书籍、网页、论文、代码、社交媒体等)

规模:通常达数TB级别(例如GPT-3训练数据约45TB)

示例

Wikipedia条目:"量子力学是描述微观粒子行为的物理学理论..."
开源代码仓库:def calculate_sum(a, b): return a + b
科学论文:"通过实验观察到超导材料在-196°C时的零电阻特性..."

2.精调数据(Fine-tuning Data)

作用:引导模型输出符合人类价值观的内容

类型

人工标注的问答对(如客服对话模板)

安全过滤后的高质量对话数据

示例

{"instruction": "解释相对论", "response": "相对论是爱因斯坦提出的时空理论..."}

3.强化学习数据(RLHF)

用途:通过人类反馈优化模型输出

形式

人类对多个回答的质量排序(A > B > C)

人工编写的理想回答模板

二、数据预处理的7个关键步骤

去重与去噪

删除重复文本(如网页抓取时的重复内容)

过滤垃圾信息(广告、乱码、攻击性内容)

语言过滤

通过语言检测模型保留目标语言数据(如中文、英文)

示例代码:

from langdetect import detect
if detect(text) in ['zh-cn', 'en']: 
    keep_text(text)

质量评分

使用分类器评估文本信息密度:

高质量文本(保留):学术论文、百科条目
低质量文本(丢弃):论坛灌水、无意义短文本

毒性过滤

通过BERT等模型检测暴力/歧视性内容:

toxicity_score = toxicity_model.predict(text)
if toxicity_score > 0.8: 
    discard_text(text)

隐私擦除

正则表达式匹配并删除个人信息:

import re
text = re.sub(r'\d{4}-\d{8}', '[PHONE]', text)  # 替换电话号码

分词优化

针对中文的混合分词策略:

传统分词:"自然语言处理"["自然", "语言", "处理"]
BPE分词:"ChatGPT"["Chat", "G", "PT"]

数据平衡

控制不同领域的比例:

科技类 30% | 文学类 20% | 通用网页 40% | 代码 10%

三、训练数据的难点与解决方案

挑战	    解决方案	                示例场景
数据偏见	    添加反刻板印象数据	    主动加入女性科学家的案例
知识时效性	动态更新语料库	        每季度新增10%最新科技论文
多语言平衡	按语言人口比例采样	    中文20% 英文60% 其他20%
代码理解  	混合代码与自然语言注释	Python代码+英文docstring

四、数据与模型性能的关系

扩展定律(Scaling Laws)

模型性能 ∝ (数据量)^0.3 × (计算量)^0.5 × (模型参数)^0.1

当数据量翻倍时,模型错误率下降约10%

数据效率对比

模型规模  所需训练数据量	典型表现
7B参数	 200B tokens	能完成基础问答但缺乏深度推理
70B参数	 1T tokens	    可处理复杂逻辑和跨领域任务

五、数据训练的实际案例

DeepSeek训练数据架构:

text
复制
预训练数据 (95%)
├─ 中文数据 40%
│ ├─ 百科类 30%
│ ├─ 科技文献 25%
│ └─ 社区问答 45%
├─ 英文数据 50%
└─ 代码数据 10%

精调数据 (4.5%)
├─ 人工标注问答对 60%
└─ 安全对话模板 40%

RLHF数据 (0.5%)
└─ 人类偏好排序数据 100%
六、未来趋势
合成数据:通过模型生成高质量训练数据(如GPT-4生成数学题解)

多模态融合:联合训练文本、图像、音频数据

法律合规:数据溯源与版权声明系统(如使用区块链记录数据来源)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点滴汇聚江河

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值