2

N o . 1 : \mathcal{No.}1: No.1:

  • 证:

    n = 2 ∗ k + 1 n=2*k+1 n=2k+1

    ∴ n 2 − 1 = ( 2 ∗ k + 1 ) 2 − 1 = 4 ∗ k 2 + 4 ∗ k = 4 ∗ ( k ∗ ( k + 1 ) ) \therefore n^2-1\\=(2*k+1)^2-1\\=4*k^2+4*k\\=4*(k*(k+1)) n21=(2k+1)21=4k2+4k=4(k(k+1))

    即证 2 ∣ ( k ∗ ( k + 1 ) ) 2|(k*(k+1)) 2(k(k+1))
    k m o d    n = 1 k\mod n=1 kmodn=1时, ∴ 2 ∣ ( k + 1 ) ⇒ 2 ∣ ( k ∗ ( k + 1 ) ) ⇒ 8 ∣ ( 4 ∗ ( k ∗ ( k + 1 ) ) ) \therefore2|(k+1)\Rightarrow2|(k*(k+1))\Rightarrow8|(4*(k*(k+1))) 2(k+1)2(k(k+1))8(4(k(k+1))),得证
    k m o d    n = 0 k\mod n=0 kmodn=0时, ∴ 2 ∣ k ⇒ 2 ∣ ( k ∗ ( k + 1 ) ) ⇒ 8 ∣ ( 4 ∗ ( k ∗ ( k + 1 ) ) ) \therefore2|k\Rightarrow2|(k*(k+1))\Rightarrow8|(4*(k*(k+1))) 2k2(k(k+1))8(4(k(k+1))),得证
    综上, 8 ∣ ( n 2 − 1 ) 8|(n^2-1) 8(n21),证毕。


N o . 2 : \mathcal{No.}2: No.2:

  • 证:

    1. ∵ n m o d    2 = 0 \because n\mod 2=0 nmod2=0

    n = 2 ∗ k n=2*k n=2k

    ∴ 3 n + 1 = 3 2 ∗ k + 1 = 9 k + 1 \therefore 3^n+1=3^{2*k}+1=9^k+1 3n+1=32k+1=9k+1

    ∵ 9 k m o d    2 = 1 \because 9^k\mod2=1 9kmod2=1

    ∴ ( 9 k + 1 ) m o d    2 = 0 \therefore (9^k+1)\mod2=0 (9k+1)mod2=0

    ⇒ 2 ∣ ( 3 n + 1 ) \Rightarrow2|(3^n+1) 2(3n+1)

    证毕

    2. ∵ n m o d    2 = 1 \because n\mod 2=1 nmod2=1

    ∴ 3 n + 1 = ( 3 + 1 ) ∗ ∑ ( i = 0 ) ( n − 1 ) 3 ( n − i − 1 ) ∗ ( − 1 ) i \therefore3^n+1=(3+1)*\sum^{(n-1)}_{(i=0)}3^{(n-i-1)}*(-1)^i 3n+1=(3+1)(i=0)(n1)3(ni1)(1)i

    ⇒ 3 n + 1 = 4 ∗ ∑ ( i = 0 ) ( n − 1 ) 3 ( n − i − 1 ) ∗ ( − 1 ) i \Rightarrow3^n+1=4*\sum^{(n-1)}_{(i=0)}3^{(n-i-1)}*(-1)^i 3n+1=4(i=0)(n1)3(ni1)(1)i

    ⇒ 4 ∣ ( 3 n + 1 ) \Rightarrow4|(3^n+1) 4(3n+1)

    证毕

    1. n m o d    2 = 1 n\mod2=1 nmod2=1时,设 n = 2 ∗ k n=2*k n=2k

      ∴ \therefore


N o . 4 : \mathcal{No.}4: No.4:

  • 证:

    17 ∣ ( 2 a + 3 b ) 17|(2a+3b) 17(2a+3b)

    ⇒ 17 ∣ 5 ∗ ( 2 a + 3 b ) \Rightarrow17|5*(2a+3b) 175(2a+3b)

    ⇒ 17 ∣ ( 10 a + 15 b ) \Rightarrow17|(10a+15b) 17(10a+15b)

    ⇒ 17 ∣ ( 27 a + 15 b ) \Rightarrow17|(27a+15b) 17(27a+15b)

    ⇒ 17 ∣ 3 ∗ ( 9 a + 5 b ) \Rightarrow17|3*(9a+5b) 173(9a+5b)

    ∵ gcd ⁡ ( 17 , 3 ) = 1 \because\gcd(17,3)=1 gcd(17,3)=1

    ∴ 17 ∣ ( 9 a + 5 b ) \therefore17|(9a+5b) 17(9a+5b)

    得证

    若17|(9a+5b)

    ⇒ 17 ∣ 3 ∗ ( 9 a + 5 b ) \Rightarrow17|3*(9a+5b) 173(9a+5b)

    ⇒ 17 ∣ ( 27 a + 15 b ) \Rightarrow17|(27a+15b) 17(27a+15b)

    ⇒ 17 ∣ ( 10 a + 15 b ) \Rightarrow17|(10a+15b) 17(10a+15b)

    ⇒ 17 ∣ 5 ∗ ( 2 a + 3 b ) \Rightarrow17|5*(2a+3b) 175(2a+3b)

    ∵ gcd ⁡ ( 17 , 5 ) = 1 \because\gcd(17,5)=1 gcd(17,5)=1

    ∴ 17 ∣ ( 2 a + 3 b ) \therefore17|(2a+3b) 17(2a+3b)

    得证


N o . 6 : \mathcal{No.}6: No.6:

  • 1 ) 1) 1)

    gcd ⁡ ( 1492 , 1066 ) = gcd ⁡ ( 1066 , 426 ) = gcd ⁡ ( 426 , 214 ) = gcd ⁡ ( 214 , 212 ) = gcd ⁡ ( 212 , 2 ) = g c d ( 2 , 0 ) = 2 \gcd(1492,1066)\\=\gcd(1066,426)\\=\gcd(426,214)\\=\gcd(214,212)\\=\gcd(212,2)\\=gcd(2,0)\\=2 gcd(1492,1066)=gcd(1066,426)=gcd(426,214)=gcd(214,212)=gcd(212,2)=gcd(2,0)=2

  • 2 ) 2) 2)

    gcd ⁡ ( 24871 , 3468 ) = gcd ⁡ ( 3468 , 595 ) = gcd ⁡ ( 595 , 493 ) = gcd ⁡ ( 493 , 102 ) = gcd ⁡ ( 102 , 85 ) = gcd ⁡ ( 85 , 17 ) = gcd ⁡ ( 17 , 0 ) = 17 \gcd(24871,3468)\\=\gcd(3468,595)\\=\gcd(595,493)\\=\gcd(493,102)\\=\gcd(102,85)\\=\gcd(85,17)\\=\gcd(17,0)\\=17 gcd(24871,3468)=gcd(3468,595)=gcd(595,493)=gcd(493,102)=gcd(102,85)=gcd(85,17)=gcd(17,0)=17

  • 3 ) 3) 3)

    gcd ⁡ ( 120 , 504 , 882 ) = gcd ⁡ ( gcd ⁡ ( 120 , 504 ) , 882 ) = gcd ⁡ ( gcd ⁡ ( 120 , 24 ) , 882 ) = gcd ⁡ ( gcd ⁡ ( 24 , 0 ) , 882 ) = gcd ⁡ ( 24 , 882 ) = gcd ⁡ ( 882 , 24 ) = gcd ⁡ ( 24 , 18 ) = gcd ⁡ ( 18 , 6 ) = gcd ⁡ ( 6 , 0 ) = 6 \gcd(120,504,882)\\=\gcd(\gcd(120,504),882)\\=\gcd(\gcd(120,24),882)\\=\gcd(\gcd(24,0),882)\\=\gcd(24,882)\\=\gcd(882,24)\\=\gcd(24,18)\\=\gcd(18,6)\\=\gcd(6,0)\\=6 gcd(120,504,882)=gcd(gcd(120,504),882)=gcd(gcd(120,24),882)=gcd(gcd(24,0),882)=gcd(24,882)=gcd(882,24)=gcd(24,18)=gcd(18,6)=gcd(6,0)=6

  • 4 ) 4) 4)

    lcm ⁡ ( 135 , 513 , 3114 ) = 135 ∗ 513 ∗ 3114 gcd ⁡ ( 135 ∗ 513 + 513 ∗ 3114 + 135 ∗ 3114 ) = 23962230 \operatorname{lcm}(135,513,3114)\\=\frac{135*513*3114}{\gcd(135*513+513*3114+135*3114)}\\=23962230 lcm(135,513,3114)=gcd(135513+5133114+1353114)1355133114=23962230

N o . 7 : \mathcal{No.}7: No.7:

  • 解:
    ∵ gcd ⁡ ( 1485 , 1745 ) = gcd ⁡ ( 1745 , 1485 ) = gcd ⁡ ( 1485 , 260 ) = gcd ⁡ ( 260 , 185 ) = gcd ⁡ ( 185 , 75 ) = gcd ⁡ ( 75 , 35 ) = gcd ⁡ ( 35 , 5 ) = gcd ⁡ ( 5 , 0 ) = 5 \because\gcd(1485,1745)\\=\gcd(1745,1485)\\=\gcd(1485,260)\\=\gcd(260,185)\\=\gcd(185,75)\\=\gcd(75,35)\\=\gcd(35,5)\\=\gcd(5,0)\\=5 gcd(1485,1745)=gcd(1745,1485)=gcd(1485,260)=gcd(260,185)=gcd(185,75)=gcd(75,35)=gcd(35,5)=gcd(5,0)=5
      ∴ 1485 s + 1745 t = 5 ⇒ { t = 40 s = − 47 \ \therefore1485s+1745t=5\Rightarrow\Big\{^{s=-47}_{t=40}  1485s+1745t=5{t=40s=47
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值