OpenCV3 6.2 低通滤波器的使用

频域、频率的概念

观察图像强度值变化的频率的方法称为频域,观察灰度分布描述图像特征的方法称为空域

图像中灰度强度值变化慢的区域产生低频率,而强度值变化快的区域产生高频率,频率分为垂直频率(垂直方向上的变化)和水平频率(水平方向上的变化)。

可以用傅里叶变换余弦变换等方法显示图像的频率成分。

滤波器

滤波即选择性地提取图像某项方面的内容,可以放大图像中某些频段,同时滤掉其他频段的算子。

滤波器可以分为低通滤波器高通滤波器,本节中主要介绍块滤波器(box filter)和高斯滤波器(gaussian filter)。

块滤波器

块滤波器cv::blur可以将每个函数的值替换成该像素邻域(矩形)的平均值。

块滤波器使用了邻域像素的加权累加值来替换像素值,所以这种滤波器是线性的,且块滤波器是一种均值滤波器,由于本例使用了5*5的内核,其内核可以写为:

1/251/251/251/251/25
1/251/251/251/251/25
1/251/251/251/251/25
1/251/251/251/251/25
1/251/251/251/251/25

利用线性滤波器将内核移动到图像 的每个像素上,并将对应像素乘以权重,在数学上称为卷积
在这里插入图片描述

高斯滤波器

高斯滤波器cv::GaussianBlur也是线性滤波器,但与块滤波器不同,高斯滤波器像素对应的权重与它到中心像素之间的距离成正比,即正态分布函数。一维高斯函数的公式为:
在这里插入图片描述
参数σ决定高斯函数曲线的形状,σ越大,函数曲线越扁平,即周围像素占的权重越小;σ越小,函数曲线越陡峭,即周围像素占的权重越大

要在图像(二维空间)上应用二维高斯滤波器,只需在横向线条上应用一维高斯滤波器(过滤水平方向的频率),再在纵向线条上应用一维高斯滤波器(过滤竖直方向的频率)。原理是高斯滤波器是一种可分离滤波器,可以分为两个一维滤波器。

具体实现

cv::Mat image = cv::imread("boldt.jpg");
cv::Mat boxblur, gaussianblur;
cv::blur(image,   //原图像
         boxblur, //经过块滤波器滤波后的图像
         cv::Size(5, 5)); //尺寸定为5*5的滤波器
cv::GaussianBlur(image,          //原图像
                 gaussianblur,   //经过高斯滤波后的图像
                 cv::Size(5, 5), //尺寸定为5*5的滤波器
                 1.5,             //控制高斯曲线形状的参数sigmaX,sigmaX越大,附近像素占的比例越小
                 0);             //控制高斯曲线形状的参数sigmaY,如指定为0或不指定默认与sigmaX相同
cv::imshow("image", image);
cv::imshow("boxblur", boxblur);
cv::imshow("gaussianblur", gaussianblur);

效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

cv::blur函数的使用

函数签名

CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
                        Size ksize, Point anchor = Point(-1,-1),
                        int borderType = BORDER_DEFAULT );

参数分别为:输入图像,输出图像,滤波器尺寸,初始点(默认为矩形中间点),边界的类型(一般默认)。

cv::GaussianBlur函数的使用

函数签名

CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
                                double sigmaX, double sigmaY = 0,
                                int borderType = BORDER_DEFAULT );

参数分别为:输入图像,输出图像,滤波器尺寸,x方向σ参数sigmaXy方向σ参数sigmaY,边界的类型(一般默认)。

注:这里如只填sigmaX(或者sigmaY设为0)也可以,会默认sigmaY等于sigmaX。如果sigmaX和sigmaY都设为0,函数会自行判断最适合尺寸的σ值。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值