【吴恩达deeplearning.ai】Course 4 - 卷积神经网络 - 第一周测验

←上一篇↓↑下一篇→
1.11 为什么使用卷积?回到目录2.1 为什么要进行实例探究?

总结

习题

第 101 题

你认为把下面这个过滤器应用到灰度图像会怎么样? [ 0 1 − 1 0 1 3 − 3 − 1 1 3 − 3 − 1 0 1 − 1 0 ] \begin{bmatrix} 0&1&-1&0\\ 1&3&-3&-1\\ 1&3&-3&-1\\ 0&1&-1&0\\ \end{bmatrix} 0110133113310110
A.会检测45度边缘

B.会检测垂直边缘

C.会检测水平边缘

D.会检测图像对比度

第 102 题

假设你的输入是一个300×300的彩色(RGB)图像,而你没有使用卷积神经网络。 如果第一个隐藏层有100个神经元,每个神经元与输入层进行全连接,那么这个隐藏层有多少个参数(包括偏置参数)?

A.9,000,001

B.9,000,100

C.27,000,001

D.27,000,100

第 103 题

假设你的输入是300×300彩色(RGB)图像,并且你使用卷积层和100个过滤器,每个过滤器都是5×5的大小,请问这个隐藏层有多少个参数(包括偏置参数)?

A.2501

B.2600

C.7500

D.7600

第 104 题

你有一个63x63x16的输入,并使用大小为7x7的32个过滤器进行卷积,使用步幅为2和无填充,请问输出是多少?

A.29x29x32

B.16x16x32

C.29x29x16

D.16x16x16

第 105 题

你有一个15x15x8的输入,并使用“pad = 2”进行填充,填充后的尺寸是多少?

A.17x17x10

B.19x19x8

C.19x19x12

D.17x17x8

第 106 题

你有一个63x63x16的输入,有32个过滤器进行卷积,每个过滤器的大小为7x7,步幅为1,你想要使用“same”的卷积方式,请问pad的值是多少?

A.1

B.2

C.3

D.7

第 107 题

你有一个32x32x16的输入,并使用步幅为2、过滤器大小为2的最大化池,请问输出是多少?

A.15x15x16

B.16x16x8

C.16x16x16

D.32x32x8

第 108 题

因为池化层不具有参数,所以它们不影响反向传播的计算。

A.对 B.不对

第 109 题

在视频中,我们谈到了“参数共享”是使用卷积网络的好处。关于参数共享的下列哪个陈述是正确的?(选出所有正确项)

A.它减少了参数的总数,从而减少过拟合。

B.它允许在整个输入值的多个位置使用特征检测器。

C.它允许为一项任务学习的参数即使对于不同的任务也可以共享(迁移学习)。

D.它允许梯度下降将许多参数设置为零,从而使得连接稀疏。

第 110 题

在课堂上,我们讨论了“稀疏连接”是使用卷积层的好处。这是什么意思?

A.正则化导致梯度下降将许多参数设置为零。

B.每个过滤器都连接到上一层的每个通道。

C.下一层中的每个激活只依赖于前一层的少量激活。

D.卷积网络中的每一层只连接到另外两层。

101-110题 答案

101.B 102.D 103.B 104.A 105.B 106.C 107.C 108.B 109.BD 110.C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值