取初值X0=0,用牛顿迭代法求方程e^x+10*x-2=0的近似根,要求误差不超过0.5*10^(-3).
实验结果:0.09052
function x = agui_newton(fname,dfname,x0,e)
%fname为函数名,dfname为函数fname的导函数,x0为迭代初值
%e为精度,N为最大迭代次数(默认100)
%牛顿迭代法
N=100;
x=x0;
x0=x+2*e;
k=0;
while abs(x0-x)>e&&k<N
k=k+1;
x0=x;
x=x0-feval(fname,x0)/feval(dfname,x0);
disp(x)
end
if k==N
warning('已达最大迭代次数');
end
插入内联函数:
fun=inline('exp(x)+10*x-2')
dfun=inline('exp(x)+10')
调用agui_newton函数:
x=agui_newton(fun,dfun,0,0.0005)
运行结果:
学习了解到:Y=diff(X)函数可对X求一阶导,Y=diff(X,N)可对X求n阶导,Y=diff(X,N,DIM),求导阶数不能大于DIM,可改写程序,不用输入导函数。
pretty(X)的作用:使X以类似排版数学的纯文本格式打印。(可以用来检测是否正确)
function x = agui_newton(fname,x0,e)
%fname为函数名,df为函数fname的导函数,x0为迭代初值
%e为精度,N为最大迭代次数(默认100)
%牛顿迭代法
N=100;
syms x;
df=diff(fname(x));
pretty(df) %可不写,用于显示导函数
x=x0;
x0=x+2*e;
k=0;
while abs(x0-x)>e&&k<N
k=k+1 %不加;显示更直观的迭代次数,加;可隐藏输出
x0=x;
x=x0-feval(fname,x0)/double(subs(df,x0));
disp(x)
end
if k==N
warning('已达最大迭代次数');end
运算结果: