人脸识别技术都是基于人脸关键特征提取对比完成识别的,其中,特征的完整性是算法成败的一个极为关键的因素,但是当受到外界干扰较多,外界的条件发生明显变化的时候,由于传统方法过于依赖明显的、完整的图像特征,一旦由于人脸发生遮挡,造成部分特征的消失,导致人脸图像特征不完整时,这种算法就会失效,导致无法和库中人脸信息进行对比。遮挡造成的人脸识别的困难主要体现在由遮挡所引发的特征损失、对准误差和局部混叠等方面.
常见人脸遮挡方式
引发面部遮挡的原因主要有三种:
1.1光线遮挡:由于不均匀的或极度强烈的外部光照所引起的遮挡。图a
1.2实物遮挡:覆盖在人脸上的物品,如帽子,眼镜,围巾等。图b
1.3自遮挡:是由于人体姿势导致的,如侧脸。图c
人脸遮挡对人脸识别的影响
下面我们看一组图片:
通过眼睛我们很容易判断上面一组图片都是同一人。但是我们的人脸识别的应用能判断出他们是同一人吗?
接下来我们将把上面的图片通过百度AI和腾讯AI进行对比
2.1百度AI对比结果
怎样降低遮挡对人脸识别的影响,人脸图像算法研究(3)
最新推荐文章于 2024-10-28 08:10:06 发布
本文探讨了遮挡对人脸识别技术的影响,包括光线、实物和自遮挡三种遮挡类型。通过实例展示了遮挡如何降低人脸识别系统的准确性,并介绍了现有算法如子空间回归、鲁棒误差编码和特征提取的局限性。同时,提到了深度学习在遮挡修复和注意力机制方面的应用,以及解决遮挡问题对于提升门禁系统和身份识别的重要现实意义。
摘要由CSDN通过智能技术生成