本文实现了像素级别的风格转换,它的关键是提供了两个域中有相同数据的成对训练样本,本质上,是一个CGAN。
cycle-gan/dual-gan则更胜一筹,不需要配对的数据集,可以实现源域和目标域的相互转换。
pairedcycle,将源域和目标域的相互转换用到化妆和去妆,很有趣的应用。
文学习了一个数据集到另一个数据集的迁移,可以用于迁移学习,如实现漫画风格。
文实现了动作的迁移。
实现了年龄的仿真。
本文实现了像素级别的风格转换,它的关键是提供了两个域中有相同数据的成对训练样本,本质上,是一个CGAN。
cycle-gan/dual-gan则更胜一筹,不需要配对的数据集,可以实现源域和目标域的相互转换。
pairedcycle,将源域和目标域的相互转换用到化妆和去妆,很有趣的应用。
文学习了一个数据集到另一个数据集的迁移,可以用于迁移学习,如实现漫画风格。
文实现了动作的迁移。
实现了年龄的仿真。