GAN应用之风格迁移&超分辨重建,无监督深度学习新方法(4)

本文介绍了GAN在风格迁移和超分辨重建中的应用,包括无监督的Cycle-GAN实现源域和目标域的相互转换,应用于化妆与去妆、漫画风格迁移、动作迁移和年龄仿真等。此外,还提到了去雨算法、卡通风格转换、字体风格迁移和去模糊等实用案例。GAN的超分辨重建技术也在小脸检测中展现出潜力,其应用前景广阔。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文实现了像素级别的风格转换,它的关键是提供了两个域中有相同数据的成对训练样本,本质上,是一个CGAN。
GAN应用之风格迁移
cycle-gan/dual-gan则更胜一筹,不需要配对的数据集,可以实现源域和目标域的相互转换。
GAN应用之风格迁移
pairedcycle,将源域和目标域的相互转换用到化妆和去妆,很有趣的应用。
GAN应用之风格迁移

文学习了一个数据集到另一个数据集的迁移,可以用于迁移学习,如实现漫画风格。
GAN应用之风格迁移

GAN应用之风格迁移
文实现了动作的迁移。
GAN应用之风格迁移

实现了年龄的仿真。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值