【蜂口 | AI人工智能】表情识别——龙鹏 深度学习与人脸图像应用连载(七)

本文探讨了表情识别,特别是面部肌肉运动与基本表情、微表情的区别。介绍了传统方法(静态图、动态视频分析)与深度学习在表情识别中的应用,并讨论了表情分类和幅度估计的挑战。表情识别在游戏、人机交互和表情迁移等领域有广泛应用。
摘要由CSDN通过智能技术生成

本次继续给大家带来的是表情识别这个问题。我们将从四个方向给大家进行分享。

首先,我们会给大家科学地定义一下表情是什么?表情实际上包含了我们平常所说的表情以及微表情。

其次,我们会简单地介绍一下传统方法的研究思路。传统的方法主要从静态图和动态视频两个方面进行讲述。

然后,我们再给大家介绍一下深度学习的方法。

最后,我们对表情分类这个问题的应用和它的难点做一个完整的介绍。

下面开始我们第一部分的分享:什么是表情?

所谓表情其实指的是面部的肌肉的运动。我们平常所说的表情包含七种基本的表情,主要是包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶以及蔑视等。
在这里插入图片描述
上面这张图是一个表情常用的数据集,这个数据集包含了八种表情,实际上就是对应我们左边所说的七种表情以及中性,也就是无表情。当然这个图的顺序跟我们前面的文字没有一一对应。总之这七种表情就是我们平常最常见的表情。

但是表情实际上并不仅仅如此。科学上还有一种表情叫做微表情。微表情的研究常常被心理学家和犯罪科学家用于相关的研究。

那什么是微表情呢?所谓微表情,其实就是持续时间非常短,它只是某种无意识地使人类在隐藏某种情感。无意识的一个行动,它的持续时间通常不到一秒钟。

举个例子,当我们有的时候表现出微笑,但其实我们表示的是蔑视这样的一种感情。大家平时应该有这样的感受。所以表情其实分为基本表情和微表情这两大类。当然还有更多更丰富的表情,是我们所研究的问题的复杂性来定,我们可以去进行更多的分类。

那表情它是怎么形成的呢?前面我们说了表情实际上是面部的肌肉运动,而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值