文章目录 一、基础backbone 二、激活函数 三、卷积&池化层&参数计算 三、归一化层 四、激活函数&优化策略 五、目标检测 六、语义分割 七、图像去噪 八、一些经常考察的代码实现 以下内容为自己整理学习所用,若有侵权,联系删除。 一、基础backbone CNN结构演变总结(一)经典模型 CNN结构演变总结(二)轻量化模型 EfficientNet网络详解、EfficientNetV2网络详解 二、激活函数 常用激活函数(relu,glu,gelu,swish等) 三、卷积&池化层&参数计算 《变形卷积核、可分离卷积?卷积神经网络中十大拍案叫绝的操作。》: 子像素卷积