Python无监督学习2

本文介绍了Python中无监督学习的降维与流形学习方法,包括主成分分析(PCA)、非负矩阵分解(NMF)和t-SNE。PCA用于数据可视化和特征提取,NMF适用于非负数据,t-SNE则用于复杂数据的二维映射,以增强数据的可区分性。通过实例展示了PCA在人脸识别中的应用以及NMF在模拟数据和人脸图像上的效果,最后讨论了t-SNE在高维数据可视化中的优势。
摘要由CSDN通过智能技术生成

降维、特征提取与流形学习

为了实现数据变换的那些目的,最常用的算法就是主成分分析。以及另外两种算法:用于特征提取的非负矩阵分解 NMF、用于二位散点图可视化的 t-SNE

1.主成分分析

主成分分析(principal component analysis, PCA)是一种旋转数据集的方法,旋转后的特征在统计上不相关。通常是根据特征对解释数据的重要性来选择它的一个子集。

mglearn.plots.plot_pca_illustration()
plt.show()

 

 成分1标记的地方是数据中包含最多信息的方向,沿着这个方向的特征之间最为相关。利用这一过程找到的方向称为主成分,一般来说,主成分个数与原始特征相同。然后将成分旋转到与坐标轴平行,旋转前,从数据中减去平均值,使得变换后的数据以零为中心。两个成分是不相关的,对于这种数据表示,除了对角线,相关矩阵全为零。

图3只保留第一个主成分。图4位于原始空间,这种变换有时用于除去数据中的噪声影响,或者将主成分中保留的那部分信息可视化。

1.1将 PCA 应用于 cancer 数据集并可视化

PCA最常见的用法就是将高维数据可视化,对于特征超多的数据集,我们可以使用一种更简单的可视化方法----对每个特征分别计算两个类别的直方图。

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
fig, axes = plt.subplots(15, 2, figsize=(10, 20))
malignant = cancer.data[cancer.target == 0]
benign = cancer.data[cancer.target == 1]
ax = axes.ravel()
for i in range(30):
    _, bins = np.histogram(cancer.data[:, i], bins=50)
    ax[i].hist(malignant[:, i], bins=bins, color=mglearn.cm3(0), alpha=.5)
    ax[i].hist(benign[:, i], bins=bins, color=mglearn.cm3(2), alpha=.5)
    ax[i].set_title(cancer.feature_names[i])
    ax[i].set_yticks(())
ax[0].set_xlabel("Feature magnitude")
ax[0].set_ylabel("Frequency")
ax[0].legend(["malignant", "benign"], loc="best")
fig.tight_layout()
plt.show()

 

 这里我们为每个特征创建一个直方图,计算具有某一特征的数据点在特定范围内的出现频率。但是这种图无法向我们展示变量之间的相互作用以及这种相互作用与类别之间的关系。利用PCA,我们可以获取到主要的相互作用,并得到稍微完整的图像。我们可以找到前两个主成分,并在这个新的二维空间中用散点图将数据可视化。

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(cancer.data)
X_scaled = scaler.transform(cancer.data)

 学习并应用PCA变换与应用预处理变换一样简单。我们将PCA对象实例化,调用 fit 方法找到主成分,然后调用 transform 来旋转并降维。默认情况下,PCA仅旋转数据,但保留所有的主成分。为了降低数据的维度,我们需要在创建对象时指定想要保留的主成分个数。

from sklearn.decomposition import PCA
# 保留数据的前两个主成分
pca = PCA(n_components=2)
# 对数据拟合PCA模型
pca.fit(X_scaled)
# 将数据变换到前两个主成分的方向上
X_pca = pca.transform(X_scaled)
print("Original shape: {}".format(str(X_scaled.shape)))
print("Reduced shape: {}".format(str(X_pca.shape)))

现在对前两个主成分作图

plt.figure(figsize=(8, 8))
mglearn.discrete_scatter(X_pca[:, 0], X_pca[:, 1], cancer.target)
plt.legend(cancer.target_names, loc="best")
plt.gca().set_aspect("equal")
plt.xlabel("First principal component")
plt.ylabel("Second principal component")
plt.show()

 

PCA观察数据中的相关性,此图中可以看到恶性点比良性点更加分散。 PCA的一个缺点在于,通常不容易对图中的两个轴做出解释。主成分对应于原始数据中的方向,所以他们时原始特征的组合。在拟合过程中,主成分被保存在PCA对象的 components_ 属性中。

print("PCA component shape: {}".format(pca.components_.shape))

行对应主成分,列对应PCA的原始特征属性。

print("PCA components:\n {}"
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python中有许多用于无监督学习的算法和工具。无监督学习是一种机器学习方法,其中算法从未标记的数据中自动发现模式和结构,而无需任何人工标签或目标变量的指导。以下是一些常见的Python库和算法,可用于无监督学习: 1. 聚类算法:聚类算法用于将数据样本分成不同的组或簇。常见的聚类算法包括K-means、层次聚类、DBSCAN等。在Python中,你可以使用scikit-learn库中的KMeans、AgglomerativeClustering和DBSCAN等类来执行聚类任务。 2. 主成分分析(PCA):PCA是一种降维技术,它通过线性变换将高维数据映射到低维空间。Python中的scikit-learn库提供了PCA类,可以用于执行PCA分析。 3. 独立成分分析(ICA):ICA是一种盲源分离方法,它可以将混合信号拆分为统计上相互独立的成分。在Python中,你可以使用scikit-learn库中的FastICA类执行ICA。 4. 随机森林:虽然随机森林通常用于监督学习,但也可以用于无监督学习任务,例如异常检测和聚类。在Python中,你可以使用scikit-learn库中的RandomForestClassifier和RandomForestRegressor类来构建随机森林模型。 5. 关联规则挖掘:关联规则挖掘用于发现数据中的频繁项集和关联规则。Python中的mlxtend库提供了Apriori算法和FP-growth算法,可以用于执行关联规则挖掘。 这只是无监督学习中一些常见的Python工具和算法的例子,还有许多其他可用的库和方法。具体使用哪个工具取决于你的数据和具体的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值