1005. K 次取反后最大化的数组和
给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个个索引 i 并将 A[i] 替换为 -A[i],
然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)
以这种方式修改数组后,返回数组可能的最大和。
示例 1:
输入:A = [4,2,3], K = 1
输出:5
解释:选择索引 (1,) ,然后 A 变为 [4,-2,3]。
示例 2:
输入:A = [3,-1,0,2], K = 3
输出:6
解释:选择索引 (1, 2, 2) ,然后 A 变为 [3,1,0,2]。
示例 3:
输入:A = [2,-3,-1,5,-4], K = 2
输出:13
解释:选择索引 (1, 4) ,然后 A 变为 [2,3,-1,5,4]。
提示:
1 <= A.length <= 10000
1 <= K <= 10000
-100 <= A[i] <= 100
分析:
先对数组A排序,i指针遍历数组,当i>=K时跳出循环,此时i即代表了数组的索引,也累加了次数,
若A[i]是负数,将A[i]取反,
若A[i]不是负数,判断K-i是不是偶数,
若是偶数,只需将A[i]取反K-i次,相当于不需要操作,
若是奇数,说明将A[i]取反K-i-1次无用操作后,还需要再进行一次有用的操作,
这时我们就需要找出代价最小的操作,
判断取反A[i-1]、A[i]、A[i+1]哪个代价会最小,就取反哪个,同时需要注意避免数组越界,
上述操作完成后,跳出循环,返回此时数组的元素和。
代码:
public class LeetcodeTest {
public static void main(String[] args) {
Solution So = new Solution();
int[] A = {2,-3,-1,5,-4};
int K = 2;
System.out.println(So.largestSumAfterKNegations(A, K));
}
}
class Solution {
public int largestSumAfterKNegations(int[] A, int K) {
Arrays.sort(A);
for(int i=0; i<K;i++){
if(A[i] < 0 && i<A.length){
A[i] = -A[i];
}else if(A[i] != 0){
if((K-i)%2 != 0){
if(i+1<A.length){
if(i-1>=0){
if(A[i+1] <= A[i] && A[i+1] <= A[i-1]){
A[i+1] = -A[i+1];
}else if(A[i] <= A[i+1] && A[i] <= A[i-1]){
A[i] = -A[i];
}else{
A[i-1] = -A[i-1];
}
}else{
if(A[i] <= A[i+1]){
A[i] = -A[i];
}else{
A[i+1] = -A[i+1];
}
}
}else{
if(i-1>=0){
if(A[i] <= A[i-1]){
A[i] = -A[i];
}else{
A[i-1] = -A[i-1];
}
}else{
A[i] = -A[i];
}
}
}
break;
}
}
int sum = 0;
for(int j=0; j<A.length; j++){
sum += A[j];
}
return sum;
}
}