一、群
半群
在非空集合上定义了一个满足结合律的二元运算,则称 { S ; ∗ } \{S;* \} {S;∗}为一个半群。
幺元
左幺元满足 e a = a ea = a ea=a,如果既是左幺元又是右幺元,则称为幺元,则该半群就是幺半群。
逆元
存在 b ∈ S , b a = e b \in S ,ba =e b∈S,ba=e,则称b为a的左逆元,如果既是左逆元又是右逆元,则称 b b b为逆元, a a a成为可逆元。
性质
幺半群的幺元是唯一的,而且任何可逆的逆元也是唯一的。
群
如果幺半群中的每一个元都是可逆元,则称为群。
交换群、无限群、有限群、平凡群
特点
满足封闭性、结合律、存在恒等元和逆元。
满足交换律的群称为阿贝尔群
性质
满足左、右消去律
子群
设G为群,H是群G的子集,H不是空集,H在G的运算上构成群,则称H为G的子群,记作H<G。
例:
{ R + ; ⋅ } < { R ∗ ; ⋅ } \{R^{+};·\} < \{R^{*};·\} {R+;⋅}<{R∗;⋅} { { 1 , − 1 } ; ⋅ } < { R ∗ ; ⋅ } \{\{1,-1\};·\} < \{R^{*};·\} {{1,−1};⋅}<{R∗;⋅}
性质
1)G的幺元一定在H里面
2) ∀ h ∈ H \forall h \in H ∀h∈H ,h在G中的逆元 h − 1 ∈ H h^{-1} \in H h−1∈H
3)设 H 1 < G , H 2 < G H_1 < G,H_2 <G H1<G,H2<G,则 H 1 ∩ H 2 < G H_1 \cap H_2 < G H1∩H2<G
子群的判定
设G为群,H为G的非空子集,则在下列条件等价
- H <G
- ∀ a , b ∈ H , a b ∈ H , a − 1 ∈ H \forall a,b \in H, ab\in H,a^{-1} \in H ∀a,b∈H,ab∈H,a−1∈H
- ∀ a , b ∈ H , a b − 1 ∈ H \forall a,b \in H, ab^{-1} \in H ∀a,b∈H,ab−1∈H
设H为群G的非空有限子集,则 H < G ⇔ H H<G \Leftrightarrow H H<G⇔H对运算封闭
陪集
设G为群, H < G , a ∈ G H < G, a \in G H<G,a∈G 定义 a H = { a h ∣ h ∈ H } , H a = { h a ∣ h ∈ H } aH = \{ah | h \in H \},Ha = \{ha| h \in H\} aH={ah∣h∈H},Ha={ha∣h∈H},以a 为代表元的H的左陪集和右陪集。
定理 :设G为群,H<G,则关系 a R b = a − 1 b ∈ H a R b = a^{-1}b \in H aRb=a−1b∈H 为等价关系,a所在的等价类 a ‾ = a H \overline{a} = aH a=aH,故a的所有左陪集构成G的一个划分。
在加法群中,左陪集记作 a + H a + H a+H ,关系R为 a R b ⇔ b − a ∈ H aRb \Leftrightarrow b-a \in H aRb⇔b−a∈H
H是群G的子群, a , b ∈ G a,b \in G a,b∈G则 a H aH aH 和 b H bH bH要么互不相交,要么重合。
a H = b H aH = bH aH=bH当且仅当 a − 1 b ∈ H a^{-1}b \in H a−1b∈H
等价关系
A是一个非空集合,R是 A × A A \times A A×A的一个子集, a , b ∈ A a,b \in A a,b∈A,若 ( a , b ) ∈ R (a,b) \in R (a,b)∈R,则称a与b有关系R,记为aRb或a~b,则称R为A的一个二元关系。
如果关系满足反身性、对称性、传递性,则称关系R为A的一个等价关系。
等价类和代表元
A中与a有关系R的所有元素的集合,a称为代表元
商群
商集合
G中有等价关系R,则G的所有不同的等价类的集合称为G对R的商集合,记为G/R 。
从陪集来定义:
{ a H } \{aH\} {aH}构成G的分类,记商集合 G / H G/H G/H为G对H的左商集或者左陪集空间。
a ‾ \overline{a} a是A的子集合,是商集合A/R中的元素。
G/H的基数称为H在G中的指数,记为 [ G : H ] [G:H] [G:H]
例:
[ Z : m Z ] = m , m ∈ N [Z:mZ] =m ,m \in N [Z:mZ]=m,m∈N 所有的左陪集 0 ‾ , 1 ‾ , . . . m − 1 ‾ \overline{0},\overline{1},...\overline{m-1} 0,1,...m−1
lagrange定理
设G是有限群,H<G,则有子群H的阶是群G的阶的因子。特别地,任何元素的阶也是群G的阶的因子。
[
G
:
H
]
=
[
G
:
H
]
×
∣
H
∣
[G:H] = [G:H]\times |H|
[G:H]=[G:H]×∣H∣
推论
设G是有限群,K<G,H<K,则有
[ G : H ] = [ G : K ] × [ K : H ] [G:H] = [G:K]\times[K:H] [G:H]=[G:K]×[K:H]
商群
思想:由G中的运算,诱导出G/H的运算。
当且仅当H是G的正规子群时,任两个左陪集的乘积一定是一个左陪集,并且乘积的代表元就是原来两个左陪集代表元的乘积,于是我们在左陪集空间G/H上定义乘法 g 1 H ⋅ g 2 H = g 1 g 2 H g_1H \cdot g_2 H = g_1g_2H g1H⋅g2H=g1g2H,满足该运算的G/H构成一个群,称为G对H的商群。
同余关系
设集合H中有二元运算,如果H的一个等价关系R在该运算下仍然保持,即对任意 a , b , c , d ∈ H a,b,c,d \in H a,b,c,d∈H, a R b , c R d ⇒ ( a ∗ c ) R ( b ∗ d ) aRb ,cRd \Rightarrow (a*c)R(b*d) aRb,cRd⇒(a∗c)R(b∗d),则称R为H关于运算*的一个同余关系。
此时a所在的等价类 a ‾ \overline{a} a也叫做a的同余类。
正规子群
设H是群G的子群,如果对于任意 g ∈ G , h ∈ H g \in G, h\in H g∈G,h∈H,有 g h g − 1 ∈ H ghg^{-1}\in H ghg−1∈H,则称H为G的正规子群,记作 H ⊲ G H \lhd G H⊲G
例:
平凡子群为正规子群
Abel群的任意子群都是正规子群
设H<G,则下列条件等价
- H ⊲ G H \lhd G H⊲G
- ∀ g ∈ G , g H = H g \forall g \in G , gH = Hg ∀g∈G,gH=Hg
- ∀ g 1 , g 2 ∈ G , g 1 H ⋅ g 2 H = g 1 g 2 H \forall g_1 , g_2 \in G, g_1 H \cdot g_2 H = g_1g_2H ∀g1,g2∈G,g1H⋅g2H=g1g2H,其中 g 1 H ⋅ g 2 H = { g 1 h 1 g 2 h 2 ∣ h 1 , h 2 ∈ H } g_1H \cdot g_2 H =\{g_1h_1g_2h_2 | h_1,h_2 \in H\} g1H⋅g2H={g1h1g2h2∣h1,h2∈H}
定理 :设H<G,则等价运算 R : a R b ⇔ a − 1 b ∈ H R:aRb \Leftrightarrow a^{-1}b \in H R:aRb⇔a−1b∈H 是G的同余关系 ⇔ H ⊲ G \Leftrightarrow H\lhd G ⇔H⊲G

例:
{ Z ; + } \{Z;+\} {Z;+} 为Abel群, m ∈ N , m Z ⊲ Z , Z / m Z m \in N,mZ \lhd Z,Z /mZ m∈N,mZ⊲Z,Z/mZ为商群,记为 Z m Z_m Zm,称为模m的剩余类加群。