GPU Burn测试指导

工具下载链接:

https://codeload.github.com/wilicc/gpu-burn/zip/master

测试方法:
上传工具到操作系统下,解压缩工具,使用make命令完成编译(确保cuda环境变量已经配置成功、 nvcc -v能显示结果)。
如果安装异常,请根据提示检查是否缺少依赖包,根据缺少的包安装依赖包比如gcc、g++等。

指定CPU卡进行测试:

# export CUDA_VISIBLE_DEVICES=1  表示指定GPU1测试,该排序是以nvidia-smi显示的GPU编号来参考(编号是从0开始,客户4个GPU编号就是0,1,2,3)的。

指定GPU后,然后执行./gpu_burn 500 开始测试:
在这里插入图片描述

测试过程,再开个窗口执行nvidia-smi ,可以查看GPU当前状态,如下显示举例,查看当前跑的GPU1的状态

在这里插入图片描述

可以查看当前gpu burn测试进度,如下表示进度32.4%

在这里插入图片描述

测试完成后,会有记录当前性能数值,以及提示GPU卡是否OK。

在这里插入图片描述

注意事项和截图

1, 对每个GPU单独测试,覆盖T4和V100。
2, 截图保存每个GPU最终测试结果,可以参考下面这个截图,然后把各个测试都截图发回来。区分好T4和V100。
在这里插入图片描述

3, 测试过程,需要观察nvidia-smi 查看被测试的GPU 温度/功耗/Memory-Usage是否都用起来了。
4, 测试过程 ,并行开窗口观察频率,因为GPU如果温度达到门限,会降频保护,性能就会下降。
可以通过命令nvidia-smi dmon -s pucvmet 观察这项数值,如果降到一半左右,表明降频了。
也可以用 nvidia-smi dmon -s pucvmet |tee monitor.log 来保存log。
在这里插入图片描述

日常记录

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

保持成长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值