Qwen-2-7B和GLM-4-9B:“大模型届的比亚迪秦L”

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. 大模型应用向开发路径:AI代理工作流
  2. 大模型应用开发实用开源项目汇总
  3. 大模型问答项目问答性能评估方法
  4. 大模型数据侧总结
  5. 大模型token等基本概念及参数和内存的关系
  6. 大模型应用开发-华为大模型生态规划
  7. 从零开始的LLaMA-Factory的指令增量微调
  8. 基于实体抽取-SMC-语义向量的大模型能力评估通用算法(附代码)
  9. 基于Langchain-chatchat的向量库构建及检索(附代码)
  10. 一文教你成为合格的Prompt工程师
  11. 最简明的大模型agent教程
  12. 批量使用API调用langchain-chatchat知识库能力
  13. langchin-chatchat部分开发笔记(持续更新)
  14. 文心一言、讯飞星火、GPT、通义千问等线上API调用示例
  15. 大模型RAG性能提升路径
  16. langchain的基本使用
  17. 结合基础模型的大模型多源信息应用开发
  18. COT:大模型的强化利器
  19. 多角色大模型问答性能提升策略(附代码)
  20. 大模型接入外部在线信息提升应用性能
  21. 从零开始的Dify大模型应用开发指南
  22. 基于dify开发的多模态大模型应用(附代码)
  23. 基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统
  24. 快速接入stable diffusion的文生图能力
  25. 多模态大模型通过外接数据方案实现电力智能巡检(设计方案)
  26. 大模型prompt实例:知识库信息质量校验模块
  27. 基于Dify的LLM-RAG多轮对话需求解决方案(附代码)<
### 快速部署 Qwen2-VL-7B 视觉大模型的最佳实践 #### 准备环境 为了确保顺利部署 Qwen2-VL-7B 模型,建议先安装必要的依赖工具并配置开发环境。这包括但不限于 Git LFS 以及 Python 环境设置。 ```bash git lfs install ``` 此命令用于初始化 Git Large File Storage (LFS),这对于处理大型文件(如预训练模型权重)至关重要[^2]。 #### 获取预训练模型 通过克隆仓库来获取已经预先训练好的 Qwen2-VL-7B 模型: ```bash git clone https://www.modelscope.cn/Qwen/Qwen2-VL-7B-Instruct.git /root/sj-tmp ``` 上述代码片段展示了如何从指定 URL 下载所需资源到本地路径 `/root/sj-tmp` 中。 #### 设置推理框架 对于高效的在线推理服务构建,推荐采用 vLLM 推理库作为支撑平台之一。它能够提供高性能的同时保持较低延迟特性,非常适合于生产环境中运行大规模语言模型。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name_or_path = "/root/sj-tmp" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) ``` 这段 Python 代码说明了加载 tokenizer model 的过程,并将其迁移到 GPU 或 CPU 上执行进一步的任务[^3]。 #### 实现简单交互界面 为了让用户更方便地与已部署的大规模视觉语言模型互动,可以创建一个简易的 Web 应用程序接口(API)或者图形化用户界面(GUI)。这里给出基于 Flask 构建 RESTful API 的例子: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route(&#39;/predict&#39;, methods=[&#39;POST&#39;]) def predict(): input_text = request.json.get(&#39;input&#39;) inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) response = {"output": result} return jsonify(response), 200 if __name__ == "__main__": app.run(host=&#39;0.0.0.0&#39;, port=8080) ``` 以上脚本定义了一个 HTTP POST 方法 &#39;/predict&#39; 来接收 JSON 请求体中的输入文本字符串,经过编码转换成张量形式送入模型预测后返回解码后的输出结果给客户端应用程序使用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写代码的中青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值