博弈论和囚徒困境中的逻辑:如何利用信息与合作

本文深入探讨了博弈论中的纳什均衡和囚徒困境,强调了信息共享在达成最优解决方案中的关键作用。通过实例分析,揭示了多阶信息在决策过程中的重要性,并以蓝眼人问题为例,阐述了强共识和弱共识的概念。最后,通过帽子颜色问题展示了公共知识在推理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们先来思考一个小问题:

纳什均衡
纳什均衡(Nash equilibrium)由美国数学家纳什提出,在多人博弈的时候,如果其他人不改变策略,不论我怎么改变也不能增加收益,所有人都是这样,也就达到了纳什均衡。换句话说,纳什均衡实现了整体利益的最大化。

想要达到纳什均衡,找到整体最优的方案,最重要的一点就是共享信息。

我们拿出最为著名的囚徒困境举例:

警察抓了两个嫌疑犯,在他们没有事先串口供的情况下,分开审问。如果两个罪犯都沉默,各判1年;互相揭发,各判8年;如果一个揭发一个沉默,那么揭发的那个释放,沉默的那个判10年。AB怎么选择才对自己最有利?

如果审问并不是分开进行,而是二人一起,结果又会如何呢?

开始时A,B两人互不吭声,马上,在明确了对方暂未交待的情况下,A有两种选择:

  1. 揭发B,如果沉默B会被判10年,所以B也会揭发A,结果两人都判8年;

  2. 保持沉默,这时B如果揭发A,会形成1里的结果,所以B应该选择更好的方案,也就是同样保持沉默。这样一来,两人各判1年。

稍作思考,A选择了沉默,B当然也做出同样的分析。最后两人只被各判1年,整体的纳什均衡达成。

由此可见,纳什均衡的达成需要足够的信息,如果信息不足,人往往就会做出损人利己的次优选择

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值