清流自诩
码龄6年
关注
提问 私信
  • 博客:103,487
    社区:1
    103,488
    总访问量
  • 29
    原创
  • 35,868
    排名
  • 81
    粉丝

个人简介:折尽九月桂,胡添腊月梅。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-09-09
博客简介:

博客标题不能为空

博客描述:
博客描述能为空
查看详细资料
  • 原力等级
    领奖
    当前等级
    3
    当前总分
    307
    当月
    1
个人成就
  • 获得216次点赞
  • 内容获得144次评论
  • 获得513次收藏
创作历程
  • 2篇
    2024年
  • 20篇
    2023年
  • 1篇
    2021年
  • 4篇
    2020年
  • 2篇
    2019年
成就勋章
TA的专栏
  • cython
    1篇
  • 垃圾箱
    1篇
  • python
    3篇
  • 深度学习零散记录
    16篇
  • SQL
    2篇
  • 气象
    4篇
  • linux
    2篇
  • sys
    1篇
兴趣领域 设置
  • 人工智能
    人工智能
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

344人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 收藏
搜TA的内容
搜索 取消

Cython记录

记录cython使用的相关内容
原创
发布博客 2024.11.01 ·
185 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

我的创作纪念日

差很多意思,不得劲儿
原创
发布博客 2024.09.06 ·
126 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

GPU编程实战python配套代码

发布资源 2023.12.06 ·
zip

【文章学习系列之模型】TimeGPT-1

《TimeGPT-1》是2023年公开于arXiv的一篇文章,该文章以chatgpt为灵感,提出一种基础时序大模型TimeGPT。该方案的提出致力于解决数据集规模不够大、模型泛化能力不强以及调参难度不易的问题,证明了更复杂更多样的数据集提高了更大规模的模型预测效果。
原创
发布博客 2023.12.06 ·
736 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【异常检测小集】

异常检测学习和记录
原创
发布博客 2023.11.14 ·
185 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【文章学习系列之模型】Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection的无名模型

第一眼看这篇论文,便感觉和DAGMM类似,深入去了解后,会发现这篇文章只是结构类似,而其余内容则从不同的角度入手,比如弱监督、新编码策略等。这篇文章较好地解决了少量异常数据标记的问题,在具有少量异常数据标签的情况下,可以用这个方法试一试。
原创
发布博客 2023.11.14 ·
526 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

【文章学习系列之模型】DAGMM

这篇论文的模型结构和训练方式对后来的研究者有着深远的影响,不少异常检测的无监督研究依旧是沿用这一套路线继续探索,并取得了不错的效果。
原创
发布博客 2023.11.14 ·
862 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【文章学习系列之模型】Koopa

《Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors》是2023年发表于NeurIPS的一篇论文。考虑到时序预测中训练和推理数据之间甚至每个回溯窗口之间存在巨大的分布差距,作者结合动态模式分解(DMD)[近似库普曼算子的领先数值方法],提出一种新的非平稳时序预测模型,实验表明模型轻量高效且具备分布变化的自适应能力。
原创
发布博客 2023.10.24 ·
1003 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

敏感性分析一览

记录了用于敏感分析的相关内容,使用python实现。
原创
发布博客 2023.10.01 ·
1207 阅读 ·
1 点赞 ·
0 评论 ·
20 收藏

敏感分析的python代码

发布资源 2023.09.26 ·
rar

【文章学习系列之模型】SCALEFORMER

《SCALEFORMER: ITERATIVE MULTI-SCALE REFINING TRANSFORMERS FOR TIME SERIES FORECASTING》是2023年发表于ICLR上的一篇论文。作者发现在对不同时间尺度预测的尝试下,逐渐细化预测颗粒有利于时序预测,因此在论文中提出了一种通用多尺度框架,实验表明显著提高前人Transformer系列模型的实验效果。
原创
发布博客 2023.05.31 ·
1582 阅读 ·
3 点赞 ·
4 评论 ·
8 收藏

【SQL】PostgreSQL语句

postgresql的sql语句
原创
发布博客 2023.05.29 ·
1002 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【文章学习系列之技巧】Network Slimming

这是一篇2017年发表于ICCV的一篇论文。该论文指出深度卷积神经网络的应用受到了高计算成本的阻碍,并提出一种修剪模型结构的方式用于降低这种成本,使得模型大小减小、运行内存减小且不降低精度的情况减少参数量。
原创
发布博客 2023.05.24 ·
683 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【Python】报错荟萃

之前好几年的编程,遇到各种奇怪的报错,有的解决了有的没有,从今天(2023.05.04)开始对以后遇到的报错进行记录。
原创
发布博客 2023.05.09 ·
800 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【文章学习系列之模型】DLinear

《Are Transformers Effective for Time Series Forecasting?》是2023年发表于AAAI上的一篇文章。该文章以“Transformer在时序预测中是否有效”为论点展开讨论,并提出一种非Transformer系列的简易网络模型。
原创
发布博客 2023.05.09 ·
3515 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

【SQL】Python的数据库操作

【Python】数据库基本操作。
原创
发布博客 2023.05.07 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【文章学习系列之模型】Non-stationary Transformers

《Non-stationary Transformers:Exploring the Stationarity in Time Series Forecasting》是2022年发表于NeurIPS上的一篇文章。在过去的时序预测研究中,人们常通过数据平稳化减弱原始序列的非平稳性,这一做法与时序预测对突发事件预测的意义相悖,忽略了现实场景下非平稳数据的普遍存在性,最终导致建模和预测过平稳化。为了解决这个问题,该论文提出由序列平稳化和逆平稳化注意力组成的新的网络结构。
原创
发布博客 2023.05.01 ·
2526 阅读 ·
4 点赞 ·
0 评论 ·
14 收藏

【文章学习系列之模型】Informer

《Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting》是2021年发表于AAAI的一篇论文。常规自注意机制和Transformer模型已达性能瓶颈,作者尝试寻找新的方法来提高Transformer模型的性能,使其在具备更高效计算、内存和架构能力的同时,又能拥有更优异的预测能力。基于此,该论文提出了一种新的时序预测思路和自注意力机制。
原创
发布博客 2023.04.25 ·
4609 阅读 ·
2 点赞 ·
3 评论 ·
25 收藏

【文章学习系列之模型】PatchTST

《A Time Series is Worth 64 Words: Long-term Forecasting with Transformers》是2023年发表于ICLR的一篇文章。该文章借鉴了计算机视觉领域的Vision Transformer(ViT)的方法,仅使用Encoder部分,提出了一种时序分块方法。
原创
发布博客 2023.04.21 ·
3923 阅读 ·
2 点赞 ·
11 评论 ·
17 收藏

【时序论文小集】

学习并记录目前的时序模型和论文
原创
发布博客 2023.04.17 ·
1104 阅读 ·
2 点赞 ·
3 评论 ·
18 收藏
加载更多