【文章学习系列之模型】DLinear

文章概况

《Are Transformers Effective for Time Series Forecasting?》是2023年发表于AAAI上的一篇文章。该文章以“Transformer在时序预测中是否有效”为论点展开讨论,并提出一种非Transformer系列的简易网络模型。

论文链接
代码链接

模型流程

在这里插入图片描述
该模型主体思路借鉴了ARIMA的分解思路,将原先时序数据分解为趋势项和残差项,并分别经过全连接层,最终求和获得预测结果。其中趋势项使用是对原始数据做平均池化所得,残差项是原始数据和池化所得数据的差值。

作者认为该模型具有四点优势:
1.路径短,捕获的长短期关系效果好
2.更少的内存、参数和更快的推理速度
3.结构简单,可解释性探索相对容易
4.超参数少,不需要过多地针对参数进行调优

实验

本文的实验部分主要针对Transformer在时序预测中是否有效展开讨论。

定量结果

在这里插入图片描述
在这里插入图片描述
同一组实验中,红色为最佳结果,蓝色为第二佳结果,可以看出Dlinear占据着更多的优势结果,总体而言优于前人已有的模型方法。因此,Transformer系列模型在时序预测中并不如简单的全连接模型有效。

定性结果

在这里插入图片描述
文中对三种数据集上的预测结果进行可视化。很显然发现Transformer系列模型无法捕捉这些数据的规律,预测结果远不如Dlinear。这从预报任务的多样性说明了Transformer系列模型的不足。

其他对比

该部分作者针对以下几个方面展开讨论。
回顾窗口的大小: 回顾长度越长,Transformer系列模型效果保持不变或逐渐恶化,Dlinear则显著提高。
训练的数据量: 多数情况下,减少数据集降低了误差,表明在数据达到一定规模后,数据集大小并不是限制模型预测能力的因素。
不同的编码策略: Transformer系列模型的核心模块的各不相同,最佳编码策略的选取也不尽相同。
模型效率: 和普通Transformer模型相比,各类衍生模型加入了众多的创新元素,虽然一定程度上有所提高,但带来了更多的训练参数和推理时间。这削弱了推导基于内存高效Transformer的方法的重要性。

总结

这篇论文使用一个简单的模型超过了众多Transformer系列复杂模型,不禁让我深思:时序预测中Transformer的发展是否真的有效?文中做了多种实验,均表现出Transformer在时序预测中大可不必且不如全连接的结论。或许追逐了这么多复杂模型的探索,尝试一些简单的模型会有不一样的风景。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清流自诩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值