【文章学习系列之模型】Koopa

《Koopa》提出了一种结合DMD的非平稳时序预测模型,有效分解为时常和时变项,实验证明其高效并能自适应分布变化。模型通过库普曼理论改进ARIMA,MLP结构表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章概况

《Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors》是2023年发表于NeurIPS的一篇论文。考虑到时序预测中训练和推理数据之间甚至每个回溯窗口之间存在巨大的分布差距,作者结合动态模式分解(DMD)[近似库普曼算子的领先数值方法],提出一种新的非平稳时序预测模型,实验表明模型轻量高效且具备分布变化的自适应能力。

文章代码链接:
文章链接
代码链接

模型结构

在这里插入图片描述
模型见上图橙框内容。模型由若干个Koopa Block组成,每一层Block输出两组数据,分别为残差项和预测项。其中下一个Block的输入由上一个Block的残差项提供,每个Block的预测项求和得到最终的模型预测值。

主要结构

在这里插入图片描述
Koopa Block见上图绿框内容。时间序列问题的分解方法一直广受欢迎,例如ARIMA,将时序数据分解为趋势项、季节项、周期项和残差项,尝试将非平稳数据预测问题分解为多个具有一定规律的数据外加残差数据进行预测。

本文作者同样进行分解操作,将原始数据分解为时变项和时常项。时常项是指在原始数据中包含的基本稳定不变的数值,如周期、幅值等。时变项是指除了时常项以外的其他内容。

为了达到分离时常项和时变项的目标,作者使用傅里叶滤波器对数据进行时频转化,选取前α比例的高频分量所在的时域数据作为时常项Xinv,相减后的其他项则作为时变项Xvar。随后再将两者分别输入到时常库普曼预测器(Time-invariant Koopman Predictor)和时变库普曼预测器(Time-variant Koopman Predictor)中。

时常库普曼预测器时变库普曼预测器
Time-invariant Koopman PredictorTime-variant Koopman Predictor
手机在这里插入图片描述
在时常库普曼预测器中,时常项 X i n v X_{inv} Xinv经由编码器得到 Z b a c k Z_{back} Zback,再在可学习矩阵 K i n v K_{inv} Kinv的转换下得到 Z f o r e Z_{fore} Zfore,最后通过解码器获得 Y i n v Y_{inv} Yinv在时变库普曼预测器中,时变项 X v a r X_{var} Xvar被划分为 n n n份,分别经由编码器获得 Z Z Z,并与 K v a r K_{var} Kvar相乘获得 Z ^ \hat{Z} Z^,其中 K v a r K_{var} Kvar是利用DMD方法对 Z Z Z计算求得。需要注意的是,该部分作者利用Koopma算子 K v a r K_{var} Kvar来模拟相邻时间片段之间的变化,如 Z 1 Z_{1} Z1 Z ^ 2 \hat{Z}_{2} Z^2,而 Z ^ 1 \hat{Z}_{1} Z^1因其无前置片段而直接继承 Z 1 Z_{1} Z1的值。 Z ^ \hat{Z} Z^在解码器的作用下获得 X ^ \hat{X} X^ X ^ \hat{X} X^中前 n n n项与 X v a r X_{var} Xvar做差后输出,成为下一个Koopa Block的输入,即为残差项; X ^ \hat{X} X^中的最后一项与时常库普曼预测器的输出 Y i n v Y_{inv} Yinv求和作为最终预测结果的一部分,即为预测项。

实验结果

在这里插入图片描述得益于作者所提的层次动态学习和时常变分离机制,以MLP为重要结构的Koopa占据了绝大多数的最佳项,具有优异的预测效果。相比之下,作为MLP模型的代表DLinear,其预报效果依旧不佳,再一次对比出作者所提结构的有效性。

消融实验

模型效率

在这里插入图片描述作者从预测性能、训练速度和内存三个方面对模型效率进行对比,可以发现左下角红色标记在这三个方面中均遥遥领先。

分解效果定性

在这里插入图片描述
作者比较了分解效果。上图(左)通过对比时变项和时常项的标准差对比两者在不同任务中的差距,可以观察到时变和时常之间以及时变项存在显著的偏差,说明傅里叶成功地从频域中将两者进行分解。上图(右)则反映了局部算子可以在不同的时期表现出不同的变化,可解释为大值热力图对应上升趋势,小值则为下降。

分解效果定量

在这里插入图片描述
将只使用时常项、只使用时变项、替换为高低通滤波器、分支转换与本文方法对比,突出分解方法的有效性。

算子稳定性

在这里插入图片描述
作者对算子的稳定性进行分析。在上图中,左图是只有时常算子的单模块模型,中图是有着时常算子和时变算子的单模块模型,右图是有着时常算子和时变算子的双模块模型。可以看出红点分布逐渐接近圆弧且计算数值逐渐减小,这表明稳定性有所提高。

总结

这篇论文不同于先前的时序分解思路,而是从库普曼理论入手,将非平稳数据分解为时变和时常分量,并将MLP、残差穿差其中,其轻量高效与优秀的预测能力再一次告诉了我“穿丝佛门”确实未必。

<think>嗯,用户想了解Koopman算子理论和DMD方法的关系,以及它们的介绍、应用和实现。首先,我需要回忆一下Koopman算子的基本概念。Koopman算子是一种线性算子,用于描述非线性动力系统的演化,将状态空间的观测函数映射到下一个时间步。这个理论的优势在于将非线性问题转化为线性,方便分析,但维度可能很高,需要截断。 然后是动态模态分解(DMD),我记得DMD是一种数据驱动的方法,用于提取动态模式,预测系统的未来状态。DMD通常用于流体力学等领域,用来分析流动结构。DMD和Koopman算子的关系在于,DMD可以被视为在有限维空间中对Koopman算子的近似,特别是在可观测函数选择合适的情况下。 接下来,用户可能想知道两者的具体联系。根据引用[2],DMD通过数据分解来估计Koopman算子的特征值和特征函数,这说明DMD是Koopman理论的一种数值实现方法。而引用[3]提到的MultDMD是一种新方法,利用了Koopman的乘法结构,优化了可观测量的选择和矩阵逼近的问题,这可能是在传统DMD基础上的改进。 应用方面,Koopman理论可以用于非平稳时间序列预测,比如引用[1]中的Koopa模型。DMD则广泛应用于流体力学、结构振动分析等领域。实现方面,Python和MATLAB都有相关工具包,比如在Python中使用PyDMD库,而引用[3]提到用MATLAB复现MultDMD。 用户可能需要具体的实现步骤或代码示例。比如DMD的基本步骤包括数据收集、构建矩阵、奇异值分解、投影、特征值分解和模式重构。代码部分可以用Python展示,如使用numpy进行矩阵运算,引用[1]中的Python测试可能涉及类似代码。 还需要注意用户提供的引用资料,确保回答中的引用正确。比如引用[1]提到Koopman理论在时间序列中的应用,引用[2]解释DMD与Koopman的关系,引用[3]介绍MultDMD方法。这些都需要自然地融入回答中,并在适当位置添加引用标识。 最后,用户可能对Koopman算子的优势和局限性感兴趣,比如线性化带来的便利与高维数据的处理难题。同时,DMD的局限性在于对可观测函数的选择敏感,而MultDMD通过优化问题改进了这一点,如引用[3]所述。 总结回答结构:先介绍理论,再讲方法,接着关系,应用,实现,最后优缺点。确保每个部分都包含相关引用,并生成相关问题供进一步学习。</think>### Koopman算子理论与动态模态分解(DMD)方法解析 #### 一、Koopman算子理论 1. **核心概念** Koopman算子是一种**无限维线性算子**,用于描述非线性动力系统的演化。它将状态空间中的非线性动态映射到可观测函数空间中的线性演化,即: $$ \mathcal{K}g(x) = g(F(x)) $$ 其中$F(x)$为非线性系统,$g$为可观测函数[^1]。 2. **优势与挑战** - 优势:将非线性系统线性化,便于频谱分析和控制设计 - 挑战:需要处理无限维空间,实际应用中需有限维近似[^3] #### 二、动态模态分解(DMD)方法 1. **基本原理** DMD是一种数据驱动方法,通过时间序列数据提取系统的主要动态模式。其核心步骤包括: - 构建数据矩阵$X$和$Y$,满足$Y = AX$ - 通过奇异值分解(SVD)求解近似系统矩阵$\tilde{A}$ - 计算$\tilde{A}$的特征值与模态[^2] 2. **数学表达** DMD模式满足: $$ \phi_k = X V \Sigma^{-1} w_k $$ 其中$w_k$为$\tilde{A}$的特征向量,$\Sigma, V$来自SVD分解[^2] #### 三、Koopman与DMD的关系 1. **理论联系** DMD可视为**有限维Koopman算子的近似**。当观测函数选择恰当时,DMD提取的特征值与Koopman算子的谱特性一致[^2]。 2. **算法升级** 新型方法如**MultDMD**(乘法动态模态分解)通过引入乘法结构和约束优化,提升了Koopman算子的逼近精度(见下图)[^3]: $$ \min_{K} \| G - K B \|_F^2 \quad \text{s.t.} \quad K \text{为乘法算子} $$ #### 四、应用场景 | 领域 | Koopman应用案例 | DMD典型应用 | |---------------|-------------------------------|----------------------------| | 流体力学 | 湍流模态分析[^1] | 流动分离结构识别 | | 能源系统 | 电力负荷预测 | 风电功率波动分析 | | 生物医学 | 心脏电信号建模 | 脑电信号特征提取 | #### 五、Python实现示例 ```python # DMD基础实现(基于PyDMD库) import numpy as np from pydmd import DMD # 1. 数据准备 X = np.loadtxt('flow_data.csv') # 时空序列数据 # 2. 执行DMD dmd = DMD(svd_rank=5) # 保留前5个模态 dmd.fit(X) # 3. 结果可视化 print("特征值:", dmd.eigs) plt.plot(dmd.modes.T) ``` #### 六、方法比较 | 维度 | Koopman方法 | 传统DMD | |--------------|------------------------------|-----------------------| | 理论基础 | 无限维线性化 | 有限维近似 | | 数据需求 | 需要设计观测函数[^3] | 直接利用原始数据 | | 计算复杂度 | 较高(需优化观测空间) | 较低 | | 适用系统 | 强非线性系统 | 弱非线性/线性系统 | #### 七、挑战与发展 1. **当前局限** - Koopman:高维观测空间导致计算负担 - DMD:对噪声敏感,需改进鲁棒性 2. **前沿方向** - 深度学习方法结合Koopman框架(如Koopa模型[^1]) - 自适应动态模式选择算法
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清流自诩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值