PMI的定义
PMI(Pointwise Mutual Information)点互信息:这一指标用来衡量两个事物之间的相关性。
如下:
在概率论中,如果x和y无关,p(x,y)=p(x)p(y);如果x和y越相关,p(x,y)和p(x)p(y)的比就越大。从后两个条件概率可能更好解释,在y出现的条件下x出现的概率除以单看x出现的概率,这个值越大表示x和y越相关。
log来自于信息论的理论,而且 log 1 = 0 ,也恰恰表明P(x,y) =
P(x)P(y),相关性为0,而且log是单调递增函数,所以 “P(x,y) 就相比于 P(x)P(y) 越大,x 和 y 相关性越大”
这一性质也得到保留。
举例
- 通常我们可以用一个Co-occurrence Matrix来表示对一个语料库中两个单词出现在同一份文档的统计情况,例如
以计算PMI(information,data)为例则有(其中分母上的19是上表所有数值之和):
其他中间结果如下表所示: - 但是从上表中你可能会发现一个问题,那就是你有可能会去计算 log 0 = -inf,即得到一个负无穷。
正点互信息PPMI
为此人们通常会计算一个 PPMI(Positive PMI) 来避免出现
-inf,即