Spark Stream之自定义数据源

用法及说明

需要继承Receiver,并实现onStartonStop方法来自定义数据源采集。

案例实操

1)需求:自定义数据源,实现监控某个端口号,获取该端口号内容。

2)自定义数据源

package com.test

import java.io.{BufferedReader, InputStreamReader}

import java.net.Socket

import java.nio.charset.StandardCharsets

import org.apache.spark.storage.StorageLevel

import org.apache.spark.streaming.receiver.Receiver

 

class CustomerReceiver(host: String, port: Int) extends Receiver[String](StorageLevel.MEMORY_ONLY) {

 

  //最初启动的时候,调用该方法,作用为:读数据并将数据发送给Spark

  override def onStart(): Unit = {

    new Thread("Socket Receiver") {

      override def run() {

        receive()

      }

    }.start()

  }

 

  //读数据并将数据发送给Spark

  def receive(): Unit = {

 

    //创建一个Socket

    var socket: Socket = new Socket(host, port)

 

    //定义一个变量,用来接收端口传过来的数据

    var input: String = null

 

    //创建一个BufferedReader用于读取端口传来的数据

    val reader = new BufferedReader(new InputStreamReader(socket.getInputStream, StandardCharsets.UTF_8))

 

    //读取数据

    input = reader.readLine()

 

    //当receiver没有关闭并且输入数据不为空,则循环发送数据给Spark

    while (!isStopped() && input != null) {

      store(input)

      input = reader.readLine()

    }

 

    //跳出循环则关闭资源

    reader.close()

    socket.close()

 

    //重启任务

    restart("restart")

  }

 

  override def onStop(): Unit = {}

}

3)使用自定义的数据源采集数据

package com.test

import org.apache.spark.SparkConf

import org.apache.spark.streaming.{Seconds, StreamingContext}

import org.apache.spark.streaming.dstream.DStream

 

object FileStream {

 

  def main(args: Array[String]): Unit = {

 

    //1.初始化Spark配置信息

val sparkConf = new SparkConf().setMaster("local[*]")

.setAppName("StreamWordCount")

 

    //2.初始化SparkStreamingContext

    val ssc = new StreamingContext(sparkConf, Seconds(5))

 

//3.创建自定义receiver的Streaming

val lineStream = ssc.receiverStream(new CustomerReceiver("hadoop102", 9999))

 

    //4.将每一行数据做切分,形成一个个单词

    val wordStream = lineStream.flatMap(_.split("\t"))

 

    //5.将单词映射成元组(word,1)

    val wordAndOneStream = wordStream.map((_, 1))

 

    //6.将相同的单词次数做统计

    val wordAndCountStream = wordAndOneStream.reduceByKey(_ + _)

 

    //7.打印

    wordAndCountStream.print()

 

    //8.启动SparkStreamingContext

    ssc.start()

    ssc.awaitTermination()

  }

}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值