实现nnUNet的dataset.Json 文件生成。
需要有python编译环境,最好在nnUNet的conda envs中运行
首先激活自己的环境,安装一个包
pip install --upgrade batchgenerators
如果出现Multithread的错误,在命令行使用如下重新安装
pip install batchgenerators==0.21
在编译器Pycharm或者环境中运行该函数
// 该功能可实现nnUNet的Json文件生成
import os
from batchgenerators.utilities.file_and_folder_operations import save_json, subfiles
from typing import Tuple
import numpy as np
'''
获取文件夹内独立文件 【列表】
'''
def get_identifiers_from_splitted_files(folder: str):
uniques = np.unique([i[:-7] for i in subfiles(folder, suffix='.nii.gz', join=False)])
return uniques
def generate_dataset_json(output_file: str, imagesTr_dir: str

该博客介绍了如何使用Python实现nnUNet的dataset.json文件生成。首先,通过激活nnUNet的conda环境并安装batchgenerators库。然后,利用提供的函数`get_identifiers_from_splitted_files`获取训练和测试数据集的文件列表。接着,调用`generate_dataset_json`函数,输入相关参数如数据集目录、模态信息、标签映射等,生成json字典。最后,将json字典保存为dataset.json。示例代码给出了具体的路径和配置。
最低0.47元/天 解锁文章
6418

被折叠的 条评论
为什么被折叠?



