这里只是简单的概述一下论文讲的什么东西,如果您更关注论文详细的细节,请移步:详细论文阅读翻译和理解
1.研究什么东西
研究的内容为惯性导航,补充的是Ronin的下半段,RoNIN的主要工作是回归一个速度和方向。而这偏文章的主要工作是把速度和方向转化为位置。这里需要注意的是转化为具体位置的时候这篇论文虽然没有要求地图的输入,但是必须是一个地图训练一个模型,因为这个文章训练的模型是和环境紧耦合的。
总结就是这个文章提出了一种:和环境绑定的根据速度获得位置的模型
2.采用什么方法
- 人通过门口或是特殊的位置时速度总是会有一些固定的变化,这个文章就想通过这个特殊的变化获得位置。
- 类似于速度指纹定位
3.模型结构
3.1 Velocity branch
就是处理速度信息的位置,主要是提取速度特征交给下面的位置网络,同时自己也会输出一版本位置预测结果
3.2 Auto-regressive location branch
根据上一时刻或是初始时刻的位置信息,结合这个时刻的速度特征,预测这个时刻的位置信息。
3.3文章中位置真值和位置预测信息的表达方法
关注的始终不是这一点,或是这一片区域,而是关注的是整张地图。输入和输出的地图信息,始终是当前人在整张地图的位置。(也就是背景板始终是整张地图,所以多次训练之后才能得到轨迹在当前地图下的修正)
3.4 Translation-aware location decoder
这个东西主要是把前面获得信息,转化为一个二维图片输出,也就是上面提到的位置输出是当前人在整张地图的位置,可以看出全文唯一限制地图的位置就是这个模型,因为作者没有开源,现在不好评估重新训练这个部分的开销。