pytorch
文章平均质量分 66
CUHK-SZ-relu
一只小程序员
展开
-
全卷积网络的理解——理解论文Fully Convolutional Networks for Semantic Segmentation
目录和VGG网络的对比和VGG网络的对比我们清楚在VGG网络当中,我们最后需要使用三个全连接层开始对原有图像进行处理,最后得到的是一个1×1000的向量,表示的是1000种识别种类的概率。VGG当中最后的全连接是整个模型中的较大败笔我们可以粗略的理解一下这个事情,1.我们使用一维向量进行计算的过程中,会丢失大量的二维信息。这是十分不好的。...原创 2021-05-21 19:00:24 · 619 阅读 · 0 评论 -
FCN全连接卷积网络(5)--Fully Convolutional Networks for Semantic Segmentation阅读(相关工作部分)
相关工作相关工作1.重新设计和微调现有的分类模型来指导语义分割的密集预测内容。2.虽然进去已有研究团队将卷积网络应用到密集预测任务当中,但是这些方面存在着一些不足,入感知范围有限、需要传统方法进行后处理等。3.与现有网络不同,FCN使用图像分类作为监督式预训练来调整和扩展深度分类结构,并通过全卷积网络进行微调,目的是从整个输入图像和标签中简单高效的学习特征。4.FCN将各层的特征融合在一起,旨在将全局特征和局部特征相结合,达到让网络自发微调的效果。...原创 2021-05-17 17:29:57 · 131 阅读 · 0 评论 -
FCN全连接卷积网络(4)--Fully Convolutional Networks for Semantic Segmentation阅读(引言部分)
引言引言部分翻译总结1.卷积网络推动了视觉识别的发展。2.早前的卷积网络运用当中,将每个像素标记为封闭对象或一个某个类别,这样的做法存在缺点。也就是传统的卷积网络存在缺点。3.实验证明,端到端的FCN网络在语义分割任务当中超过了现有水平,这是第一个在像素级别且在监督式预训练完成的网络模型。解释一下语义分割一般在业界会将其和像素级别的学习等同起来,对于每一个像素点判断一下他是什么东西,概率是多少。例如,判断某个像素点是什么,判断其大概率是个门,那么我们就将其归类到门当中。这样,我们可以看到,语义分原创 2021-05-17 16:59:57 · 210 阅读 · 0 评论 -
FCN全连接卷积网络(3)--Fully Convolutional Networks for Semantic Segmentation阅读(摘要部分)
1.摘要1.1逐句理解一下:Convolutional networks are powerful visual models thatyield hierarchies of features.卷积网络是十分有力的在获得层次特征的图像模型当中。We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic原创 2021-05-17 16:16:51 · 220 阅读 · 0 评论 -
FCN全连接卷积网络(1)--CNN卷积网络的知识储备
FCN全连接卷积网络什么是全连接卷积网络全连接神经网络,是和语义分割相关的,所以我们先要明白什么是语义分割?语义分割:大定义我们在说语义时都是和文字相关的问题,但是实际上在模式识别当中语义识别主要应用是:让机器实识别出面图像中的不同内容这里主要是对图中每个内守每一个小部分打一个标签,之后再通过训练让机器帮我们完成这个任务。为什么使用卷积网络想要明白全连接卷积网络,我们首先的明白卷积网络我们首先要理解卷积网络的设计思路:1.粗略的讲,一个图像中的信息提取,某一块的特征是集中在一部分的。所以应该原创 2021-05-15 23:22:24 · 241 阅读 · 0 评论 -
AssertionError: nn criterions don‘t compute the gradient w.r.t. targets
AssertionError:## nn criterions don’t compute the gradient w.r.t. targets - please mark these tensors as not requiring gradients读错误可以看到这是一个断言错误,就是我们设置的东西和系统设置的东西不太兼容,所以我们要再次设置一下。我们看一下后面说的东西,nn的原则告诉我们这里是不需要计算梯度的,所以请将这些张量定义为不需要计算梯度。所以是我们将某些需要计算梯度的东西传到了原创 2021-05-05 21:59:35 · 169 阅读 · 0 评论 -
卷积神经网络补充—GoogleNet
复杂神经网络的问题简单神经网络我们注意这样的一个问题,我们在之前的学习当中使用的都是简单的一条龙走下来的方式进行学习,这种是比较基础的,没有分叉,没有循环,就是一条路走完。可以看到之前学的都是特别简单的串行结构。GoogleNet是一种基础架构,我们一般拿这个网络做一个主干网络,之后再在主干网络上进行修改之后作为我们实际应用的场景。减少代码冗余:Inception Module减少代码冗余看起来比较陌生其实我们可能已经默默应用了很久了,例如:在面向过程的编程语言当中使用函数,在面向过程的编程原创 2021-04-04 09:27:46 · 310 阅读 · 0 评论 -
卷积神经网络
1. CNN1.1全连接的神经网络,为了比较的来学习,我们应当先明确什么是全连接网络:全部的线性层都是可以穿起来的时候就是一个全连接层,既任何一个输出的节点都是需要在下一层参与计算的是全连接的神经网络。1.1.1其在处理图像的问题我们在对一个图像进行全连接的时候我们需要把一个图片转化为一个一维的矩阵,这就产生了这样的一种情况,本身是相互挨着的两个点在展开的时候,可能就离得特别遥远,这就会使得原有的特征丧失。1.2整体来看卷积的大致过程卷积的过程可能会将通道数和宽和高,一般于此同时要使用下采样来减原创 2021-03-28 20:11:18 · 213 阅读 · 0 评论 -
pytorch的多分类问题
多分类问题softmax的分类器为什么要探索多分类之前我们在处理糖尿病数据集的时候我们只是有两种分类,但是很多情况的数据集不只有两种,例如MNIST数据集就是手写数字的数据集有10种不同的标签。所以我们必须有处理多种分类标签的能力。在多分类的过程中应当注意什么第一点,是否还可以使用二分类的操作当然还是可以使用二分类的方法来解决这个问题,某分类设置位p=1其他全部p=0就可以了,还是使用交叉熵损失函数来处理。这里我们要注意到,我们的样本必须是只有一个选择的,所以我们的输出数据当中只能有一个输出的数原创 2021-03-28 12:31:59 · 1506 阅读 · 0 评论 -
pytorch加载数据
数据集Batch(每次使用一个)和随机梯度下降(每次使用一个样本)如果我们使用Batch我们可能会遇见鞍点,使得我们的优化停滞不前。但是我们可以利用数组计算的优势来加速我们的运算时间。如果我们使用单个数据的随机梯度下降,那么我们将可以避免鞍点,但是我们一个一个计算我们很难充分利用cpu和gpu并行处理数据的一个能力,使得运算时间边长。所以我们为了解决这个问题应当引入mini_batchmini_batch这里有三个概念:epoch:我们到底有多少数据batch-size:分的那些小块每个是多原创 2021-03-24 19:05:26 · 155 阅读 · 0 评论 -
pytorch处理多维输入的问题
1.多维输入之前我们的输入都是只有一个维度,如果有多个维度呢?对于每一行叫做一个sample(样本)对于每一列叫做一个feature(特征)数据集各种各样的什么都有。csv可以使用excel打开,只能打开逗号做分割的数据集,空格和tab都是不行的。所以可以用记事本打开看一下子。原来的处理函数发生了相应的变化,从一维的变化成了多维这个过程拆解来看其实是这样子的:为了保证其标量性做了一次转置:这里我们有一次简写:算出来的这个标量整体写成zpytorch中的所有继承自torch.nn.mo原创 2021-03-24 15:27:56 · 1325 阅读 · 0 评论 -
罗杰斯蒂回归
我们估计的一个目标是一个连续的输出,这时候就是一个回归的任务。分类问题就是估计是已知的有限的集合当中选择一个的问题。那么我们如果我们这时候使用一个将输出转化为离散数值的情况。这样做是不好的,因为我们假定将ABC三种输出分别对应成为123,那么将存在这样的一种问题:1.原来的输出ABC之间的差异只是有差异,但是并不一定是完全相等的,例如我们可能存在A和B是特别相似的但是B和C的差异是十分巨大的。所以我们不能简单的将其对应为数字。2.还有一个问题就是A和B之间是没法确定其有明确的大小关系的,所以我们不能原创 2021-03-24 11:29:02 · 3398 阅读 · 0 评论 -
pytorch线性模型的基础使用
环境说明模型的构造首先是确定好模型loss损失函数构造使用损失函数来定量误差sqd随机梯度下降优化器使用随机梯度下降算法来降低loss函数的值使用pytorch写神经网络的第一步就是先构建一个数据集。接下来就是设定一个模型构造损失函数和优化器,主要体现使用应用接口来实现写一个训练的周期:前馈、反馈、更新就是一个周期了。numpy的广播机制我们使用一个简单的模型y=wx+b来进行理解。我们可以注意到在我们实际的应用当中xy将分别存在很多组,也就是说上面式子当中的y和x是一个向量,但是b原创 2021-03-23 17:32:34 · 365 阅读 · 0 评论