Discrete mathematics and its applications笔记02

Discrete mathematics and its applications笔记
第二章

精彩习题

1. ( f ∘ g ) ( x ) 就 是 复 合 函 数 f ( g ( x ) ) (f\circ g)(x)就是复合函数f(g(x)) (fg)(x)f(g(x))
如果 f 和 f ∘ g 是 满 射 的 ( o n t o ) , g 不 一 定 是 满 射 f和f\circ g是满射的(onto),g不一定是满射 ffg(onto)g
比如:
A = { a } , B = { b , c } , C = { d } , g ( a ) = b , f ( b ) = d , f ( c ) = d A=\{a\},B=\{b,c\},C=\{d\},g(a)=b,f(b)=d,f(c)=d A={a},B={b,c},C={d},g(a)=b,f(b)=d,f(c)=d
但是,如果 f 和 f ∘ g 是 单 射 的 ( o n t o ) , g 一 定 是 单 射 f和f\circ g是单射的(onto),g一定是单射 ffg(onto)g
反证法假设g(a)=g(b), 如果a不等于b可以推出矛盾。

2.证明函数关系 f : Z + × Z + → Z + f:Z^+\times Z^+\rightarrow Z^+ f:Z+×Z+Z+
f(m,n)=(m+n-2)(m+n-1)/2+m既是单射(one to one),也是满射(onto)。

令 x = m + n , 当 m 从 1 取 到 x − 1 时 , f ( m , n ) 从 ( x − 2 ) ( x − 1 ) 2 + 1 取 到 ( x − 2 ) ( x − 1 ) 2 + x − 1 也 就 是 说 固 定 m + n 的 值 后 , m 和 n 的 所 有 可 能 取 值 都 是 满 足 单 射 的 又 由 f ( x − 1 , 1 ) + 1 = ( x − 2 ) ( x − 1 ) 2 + x = ( x − 1 ) x 2 + 1 = f ( 1 , x ) 这 说 明 当 x 取 x + 1 时 , f ( m , n ) 取 从 上 一 次 x − 1 个 值 紧 挨 着 的 后 面 x 个 值 以 此 类 推 , 可 证 明 原 函 数 关 系 既 是 单 射 也 是 满 射 。 \begin{aligned} &令x=m+n,当m从1取到x-1时,\\ &f(m,n)从{(x-2)(x-1)\over 2}+1取到{(x-2)(x-1)\over2}+x-1\\ &也就是说固定m+n的值后,m和n的所有可能取值都是满足单射的\\ &又由f(x-1,1)+1\\ &={(x-2)(x-1)\over2}+x={(x-1)x\over2}+1=f(1,x)\\ &这说明当x取x+1时,f(m,n)取从上一次x-1个值紧挨着的后面x个值\\ &以此类推,可证明原函数关系既是单射也是满射。 \end{aligned} x=m+n,m1x1f(m,n)2(x2)(x1)+12(x2)(x1)+x1m+nmnf(x1,1)+1=2(x2)(x1)+x=2(x1)x+1=f(1,x)xx+1f(m,n)x1x
3.
1(proper subset真子集)
直接贴答案(很详细)
234.设非平方数组成一个集合A, a n 表 示 A 中 第 n 个 元 素 , 设 { x } 表 示 离 实 数 x 最 接 近 的 整 数 a_n表示A中第n个元素,设\{x\}表示离实数x最接近的整数 anAn{x}x求证: a n = n + { n } a_n=n+\{\sqrt n\} an=n+{n }

证明: 若 { x + 1 } = { x } + 1 若\{\sqrt {x+1}\}=\{\sqrt x\}+1 {x+1 }={x }+1,则存在正整数 k k k,满足
x + 1 > k + 1 / 2 > x \sqrt{x+1}>k+1/2>\sqrt x x+1 >k+1/2>x
进而 x + 1 > k 2 + k + 1 / 4 > x x+1>k^2+k+1/4>x x+1>k2+k+1/4>x
所 以 x = k 2 + k , 即 { k 2 + k } = k   ( 因 为 ( k + 1 2 ) 2 > k 2 + k > k 2 ) 所以x=k^2+k,即\{\sqrt{k^2+k}\}=k\ (因为(k+{1\over 2})^2>k^2+k>k^2) x=k2+k,{k2+k }=k ((k+21)2>k2+k>k2)
数学归纳法,假设 a n = n + { n } a_n=n+\{\sqrt n\} an=n+{n }
1 ∘ a n + 1 = a n + 1 ( 说 明 a n + 1 不 是 平 方 数 ) , 1^\circ a_{n+1}=a_n+1(说明a_{n+1}不是平方数), 1an+1=an+1(an+1),
则 a n + 1 = n + 1 + { n } 则a_{n+1}=n+1+\{\sqrt n\} an+1=n+1+{n }
假 如 这 时 有 { n + 1 } = { n } + 1 假如这时有\{\sqrt{n+1}\}=\{\sqrt n\}+1 {n+1 }={n }+1
那 么 n = k 2 + k , a n + 1 = ( k 2 + k + 1 ) + { k 2 + k } = k 2 + 2 k + 1 = ( k + 1 ) 2 是 平 方 数 , 矛 盾 , 所 以 a n + 1 = n + 1 + { n + 1 } 那么n=k^2+k,a_n+1=(k^2+k+1)+\{\sqrt{k^2+k}\}=k^2+2k+1=(k+1)^2是平方数,矛盾,所以a_{n+1}=n+1+\{\sqrt {n+1}\} n=k2+k,an+1=(k2+k+1)+{k2+k }=k2+2k+1=(k+1)2an+1=n+1+{n+1 }

2 ∘ a n + 1 = a n + 2 , 2^\circ a_{n+1}=a_n+2, 2an+1=an+2,
则 a n + 1 = n + { n } + 2 = ( n + 1 ) + ( { n } + 1 ) 则a_{n+1}=n+\{\sqrt n\}+2=(n+1)+(\{\sqrt n\}+1) an+1=n+{n }+2=(n+1)+({n }+1)
假 如 这 时 有 { n + 1 } = { n } 假如这时有\{\sqrt{n+1}\}=\{\sqrt n\} {n+1 }={n }
说 明 不 存 在 正 整 数 k 使 得 n = k 2 + k 说明不存在正整数k使得n=k^2+k k使n=k2+k
又 因 为 a n + 1 是 平 方 数 , 由 最 前 面 的 推 导 知 存 在 正 整 数 k , n = k 2 + k , 矛 盾 , 所 以 a n + 1 = n + 1 + { n + 1 } 又因为a_{n+1}是平方数,由最前面的推导知存在正整数k,n=k^2+k,矛盾,所以a_{n+1}=n+1+\{\sqrt {n+1}\} an+1k,n=k2+kan+1=n+1+{n+1 }
综 上 a n = n + { n } 综上a_n=n+\{\sqrt n\} an=n+{n }

新知

1.只有一个元素的集合叫singleton set.

2. A ⊂ B 叫 A 是 B 的 真 子 集 A\subset B叫A是B的真子集 ABAB(A is a proper subset of B,原书符号确实是这个)

3.集合S中的元素数目用|S|表示(The cardinality of S is denoted by |S|.)

4.The ordered n-tuples ( a 1 , a 2 , . . . a n ) a_1,a_2,...a_n) a1,a2,...an)和集合不同,是有顺序的。ordered 2-tuples又叫ordered pairs.

5.A subset R of the Cartesian product AxB(笛卡尔积) is called a relation(关系) from the set A to the set B.The elements of R are ordered pairs.

6.n个集合的笛卡尔积:
4比如:
57.membership tables
(对于任意一个元素,元素在集合中记为1,不在记为0)
68.
计算机可以用位流(bit string)表示一个集合的子集(1表示元素在集合中,0表示不在):
U = { 1 , 2 , 3 , 4 , 5 , 6 } 可 以 用 111111 表 示 , 然 后 { 1 , 3 , 5 } 就 用 101010 U=\{1,2,3,4,5,6\}可以用111111表示,然后\{1,3,5\}就用101010 U={1,2,3,4,5,6}111111{1,3,5}101010
补集就是把0,1互换

9.罗素悖论
7a) If S ∈ S S \in S SS , then by the defining condition for S we conclude that S ∉ S S\notin S S/S, a contradiction.
b) If S ∉ S S \notin S S/S, then by the defining condition for S we conclude that it is not the case that S ∉ S S \notin S S/S (otherwise
S would be an element of S ), again a contradiction.

10.异或运算的性质:
8用bit string方便理解,比如40题和42,43题,元素x在等号两边的集合里,当且仅当x在奇数个集合(比如x属于A,B,D,不属于C)里。
(这里不严格证明)

11.
In computer science,functions are also used to represent hwo long it takes a computer to solve problems of a given size.(函数)

12.关系和函数的联系:(关系可以一对多)
如 果 ( x R y 1 ) ∧ ( x R y 2 ) ⇒ ( y 1 = y 2 ) , 就 说 关 系 R 是 一 个 函 数 。 如果(xRy_1)\land(xRy_2)\Rightarrow(y_1=y_2),就说关系R是一个函数。 (xRy1)(xRy2)(y1=y2),R

13.Some functions never assign the same value to two different domain elements.These functions are said to be one to one.(单射,不是一一映射)
比如:
9
14.A function f from A to B is called onto ,or surjective, if and only if ∀   y   ∃   x ( f ( x ) = y ) \forall\ y\ \exist\ x(f(x)=y)  y  x(f(x)=y),where the domain for x is the domain of the function and the domain for y is the codomain of the function.(满射)

15.The function f is a one-to-one correspondence,or a bijection,if it is both one to one and onto.(双射,即一一映射)

16.如果函数f的定义域和值域都是集合A,如果A是有限集,那么f是单射(one to one)当且仅当f是满射(onto),如果A是无限集,这两者不一定等价。

17.定义:
(1)The sets A and B have the same cardinality(基数) if and only if there is a one-to-one correspondence from A to B.
(2)A set that is either finite or has the same cardinality as the set of positive integers is called countable.

18.An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers.)

19.证明有理数可数
(证正有理数)
10
(右上到左下的斜线分子分母之和为定值)

20.证明实数不可数
反证法,假设可数,则(0,1)区间也可数(因为可数集合的子集可数)
假设(0,1)之间的数可按如下排列:
11
则可以构造一个新的数-----r满足:
12
即r不等于序列中的任意一个数,矛盾,所以(0,1)内的实数集合不可数,进而实数集不可数。

### 回答1: 离散数学及其应用是一门研究离散结构和离散对象的数学学科,它在计算机科学、信息科学、通信工程、运筹学等领域有着广泛的应用。离散数学的研究内容包括图论、集合论、逻辑、代数、组合数学等。它的应用范围涉及到计算机算法、网络通信、密码学、人工智能等多个领域。 ### 回答2: 离散数学是研究离散结构和离散对象的数学分支,其应用广泛且重要。它主要关注离散的而非连续的数学结构,如集合、函数、图论、逻辑和代数等。离散数学通常用于计算机科学、信息科学和数学物理学中。 离散数学的应用十分广泛。首先,在计算机科学中,离散数学是构建和分析算法的基础。算法设计者需要使用离散数学的原理来解决问题,如确定性有限自动机、图算法、排列组合和概率等。 其次,在信息科学中,离散数学被用于密码学和信息安全领域。离散数学可以描述和分析密码系统的强度和安全性,如差分隐私、扩散和置换等。 此外,离散数学还有很多实际应用。例如,在网络和通信领域,离散数学被用于分析和设计通信协议和网络拓扑。在运筹学和优化领域,离散数学被用于解决资源规划、调度和最优化等问题。在知识工程和人工智能领域,离散数学被用于知识表示、推理和机器学习等。 总而言之,离散数学是一个十分重要且有广泛应用的数学分支。它的理论和方法对许多领域的问题都具有重要意义,不仅为解决实际问题提供了数学工具,也为学术研究提供了理论基础。 ### 回答3: 离散数学是研究离散结构和离散量的数学分支,是数学的一个重要分支领域。它的应用广泛,涉及计算机科学、信息技术、运筹学、计算数学、密码学等多个学科。 在计算机科学中,离散数学是计算机科学的基础。离散数学为计算机科学提供了算法分析、复杂度理论和数据结构等重要的数学工具。例如,图论是离散数学的一个重要分支,它为计算机网络、编译原理和并行计算等领域提供了理论基础。另外,离散数学还为计算机科学中的逻辑、离散数论、离散概率论以及随机过程等提供了数学证明和分析方法。 在信息技术领域,离散数学被广泛应用于密码学和信息安全中。离散数学中的组合数学、数论以及有限域理论等内容,为密码学提供了重要的工具和方法。离散数学的一些概念,如置换、排列组合、哈希函数和RSA算法等,被广泛应用于数据加密和信息安全领域。 此外,离散数学还在运筹学、计算数学和图像处理等领域发挥着重要作用。运筹学是研究最优化问题的学科,其中很多问题可以归结为离散优化问题。离散数学提供了图论、网络流、线性规划等数学工具来解决这些问题。同时,在计算数学中,离散数学为数值计算和算法分析提供了基础。在图像处理中,离散数学中的排列、矩阵理论和变换等概念被广泛应用于图像的表示、压缩和处理等算法。 总的来说,离散数学及其应用领域众多,离散数学的理论和方法为计算机科学、信息技术、运筹学、计算数学和图像处理等领域提供了重要的工具和思维方式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值