- 神经网络
- 核心
- 人造神经元
- 组成
- 加法器
- 将所有输入加权求和到神经元上
- 激活函数
- 一个处理单元,根据预定义函数产生一个输出
- 权值和阈值(偏置)
- 通过不同的学习算法学习这些权重和阈值(偏置)
- 加法器
- 核心
当只有一层这样的神经元存在时,它被称为感知层
- 输入层被称为第零层,只有缓冲输入
- 输出层的每个神经元都有自己的权重和阈值
当存在许多这样的层时,网络被称为多层感知层(MLP)
- MLP有一个或多个隐藏层,这些隐藏层有不同数量的隐藏神经元
以上有4个神经元的输入层,5个隐藏层,神经元分别有:4,5,6,4,3个;3个神经元的输出层。在此MLP种,下层所有的神经元连接到相邻的上层所有神经元,MLP也被称为全连接层,MLP中的信息流从输入到输出,没有反馈或跳转,这种网络也被称为前馈网络
正向传播:输入被馈送到网络,信号从输入层通过隐藏层传输到输出层,在输出层计算误差和损失函数
反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度
相关激活函数介绍、代码和图像:
激活函数