神经网络--感知机

  • 神经网络
    • 核心
      • 人造神经元
    • 组成
      • 加法器
        • 将所有输入加权求和到神经元上
      • 激活函数
        • 一个处理单元,根据预定义函数产生一个输出
      • 权值和阈值(偏置)
        • 通过不同的学习算法学习这些权重和阈值(偏置)

当只有一层这样的神经元存在时,它被称为感知层

  1. 输入层被称为第零层,只有缓冲输入
  2. 输出层的每个神经元都有自己的权重和阈值

当存在许多这样的层时,网络被称为多层感知层(MLP)

  1. MLP有一个或多个隐藏层,这些隐藏层有不同数量的隐藏神经元

在这里插入图片描述

以上有4个神经元的输入层,5个隐藏层,神经元分别有:4,5,6,4,3个;3个神经元的输出层。在此MLP种,下层所有的神经元连接到相邻的上层所有神经元,MLP也被称为全连接层,MLP中的信息流从输入到输出,没有反馈或跳转,这种网络也被称为前馈网络

正向传播:输入被馈送到网络,信号从输入层通过隐藏层传输到输出层,在输出层计算误差和损失函数
反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度

相关激活函数介绍、代码和图像:
激活函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

锋年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值