线性代数 —— 线性组合与线性表出,线性相关与线性无关

线性组合与线性表出

首先讲解关于线性组合和线性表出的概念
若对于n+1维向量组 α1,α2,α3,…,αn,β;
存在一组数k1,k2,…,kn,使得
β=α1+α2+α3+···+αn 成立;
则可以说:

  • 向量β是向量组α1,α2,…,αn的一个线性组合
  • 向量β可由向量组α1,α2,…,αn的线性表出
相关例题 ——“xxx能否由xxx线性表出”

相关例题
验证某个向量是否为一个向量组的线性组合,或者说验证某个向量能否由一个向量组线性表出的关键,即从定义出发
尝试找出n个实数,使得 β=α1+α2+α3+···+αn 成立;


线性相关与线性无关

定义
  • 线性相关:对于n维向量组 α1,α2,α3,…,αn,若存在一组不全为0的实数 k1,k2,…,kn,使得k1α1+k2α2+k3α3+···+knαn = 0 成立,则n维向量组α1,α2,···,αn是线性相关的。
  • 线性无关:对于n维向量组 α1,α2,α3,…,αn,若不存在一组不全为0的实数k1,k2,…,kn,使得k1α1+k2α2+k3α3+···+knαn = 0 成立,则n维向量组α1,α2,···,αn是线性无关的。
含义

*** k1α1+k2α2+k3α3+···+knαn = 0 (*)

  • 只要能找到一组不全为0的实数k1,k2,···,kn,能够满足式子成立,就可以说是线性相关的
  • 言外之意,这样的不全为0的一组实数,可能有多组,即不唯一
  • 如果一组都找不到,那就是线性无关的
  • 线性无关,即只有k1,k2,···,kn全为0时,(*)式 才能成立

*** 请务必好好理解,记熟线性相关和线性无关的定义和含义!

相关例题

在这里插入图片描述
典型例题也是非常基础的题型,即讨论向量组是否线性相关。这种题型把握好线性相关与线性无关的定义和含义即可。
讲解:如题,k1α1+k2α2+k3α3+k4α4 = 0,我们一定能找到
k1=k2=k3=k4=0 使得式子成立,即这组实数k1,k2,k3,k4全为0时肯定成立。关键在于,能不能找到一组不全为零的k1,k2,k3,k4也使它成立?
于是解方程组,k4=0,k2=k3,可令k2=k3=-1可以有一组解为
k1=2,k2=k3=-1,k4=0
即我们找出了一组不全为零的实数,使得k1α1+k2α2+k3α3+k4α4 = 0成立,那么根据线性相关的定义,它就是线性相关的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Silam Lin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值